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Abstract: This article presents an information permutation and breaking scheme 

to construct a low-cost encryption scheme. The proposed encryption scheme pre-

serves the security requirements of a general encryption scheme. The presented re-

search uses information entropy to depict the one-way property and tries to use en-

tropy to study the one-way property. The authors also present an estimation of the 

reasonable size of the seed set of a pseudo-random number generator. 

Keywords: Entropy, One-Way Hash Function, One-Way Property, Pseudo-

Random Number Generator. 

Mobile computing continues to grow in importance. Machines that are designated to 

perform mobile computing are notebook PCs, PDAs, and mobile phones. In general, 

these machines have lower power than desktop PCs, and one of the main applications 

of these machines is communication. The owners of these machines communicate 

with each other or to some host machines. The business users of these lower power 

machines may need to exchange secret messages with other machines. The main tech-

nique to protect these secret messages is computer cryptography. The most popular 

cryptosystems are public-key cryptosystems.
1,2

 However, encryption and decryption 

operations in these cryptosystems are expensive. It may take a long time to perform 

these operations. In addition, the length of the message that can be encrypted or de-

crypted is completely determined by the cryptosystem itself. However, the length of a 

general message is, in general, longer than the above mentioned length. The brute 

force method partitions the long message into blocks, so that each resulting block can 

be encrypted or decrypted using only one public-key operation. Thus, a message is 

partitioned into t  blocks, then, we encrypt or decrypt it requiring t  public-key opera-

tions. This will take a long time for a mobile machine. 

A scheme to reduce the cost of the public-key encryption or decryption of a long 

message uses a session key of a symmetric-key cryptosystem to encrypt it. Then, we 
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use a public-key cryptosystem to encrypt the session key. Finally, we send the en-

crypted session key and the message encrypted by the session key to the receiver. 

After receiving the encrypted message, the receiver uses a public-key operation to de-

crypt the encrypted session key, then, uses the session key to decrypt the encrypted 

message. In the scheme, the symmetric-key cryptosystem
3
 reduces the public-key 

operation of a long message to a symmetric session key which can be properly oper-

ated by a public-key operation. However, the symmetric-key encrypted message con-

tains all the information found in the original message. So, the public-key 

cryptosystem and the symmetric-key cryptosystem must prevent all attacks to ensure 

the security of the scheme. 

The proposed scheme uses a permutation-like breaking information scheme to parti-

tion a long message into t  blocks. By the interpolating theory and Shamir’s ),( nt -

threshold scheme,
4
 we try to reduce the encryption of a long message into the encryp-

tion of some small blocks. Moreover, we will reduce the security problem of the en-

cryption of a long message to that of a single public-key operation. 

The section that follows presents the main idea of the proposed scheme. Then, the 

authors summarize the security problems of the main components of the scheme. De-

tails of the proposed scheme are presented afterwards, followed by a comprehensive 

analysis. Conclusions of the presented research are given in the last section. 

Main Idea 

In the previous section, the authors point out that their approach to the problem of re-

ducing the cost of a public-key encryption of a long message is to use a permutation-

like information breaking mechanism to re-permute the long message and partition it 

into several blocks, say t  blocks, such that no one can recover the original message 

unless s/he has all t  blocks. It is a well-known scheme, called ),( nt -threshold secret 

sharing scheme. Using a ),( tt -threshold scheme, one can distribute, or partition, a se-

cret into t  shadows such that any tt   shadows can not recover the original secret 

and t  distinct shadows can recover it. Let the secret be denoted by s . In Shamir’s 

),( nt -threshold scheme,
5
 s  is placed at the constant coefficient position of a polyno-

mial of degree t 1 with other coefficients being randomly selected. We use the 

resulting random polynomial to generate n  distinct points. Then, we can use any t  

out of these n  distinct points to reconstruct the random polynomial, the unique 

interpolating polynomial of these t  distinct points, and recover s  by retrieving the 

constant coefficient of it. It should be noted that any point set of size less than t  can 

not uniquely recover the random polynomial. The distribution of the secret in 

Shamir’s scheme is depicted diagrammatically below: 
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It is obvious that the secret s can be placed at the position of any coefficient of the 

random polynomial without loss of any security condition. And, a plaintext message 

seems to be a random number in general. With this insight, we may treat a plaintext 

message as a random polynomial function, and use it to generate a set of distinct 

points by giving a set of random distinct abscissas, 1
0}{ 


t
iix . The following diagram 

can be used to depict the permutation procedure: 
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It can be seen that any set of distinct abscissas, P
t
ii Zx 

1
0}{ , uniquely determines an 

one-one linear transformation from t
PZ  to t

PZ . Let denote the linear transformation 

by xF , then, the above permutation procedure can be written in the form of the 

following matrix equation: 

     ), mod(  PaFy x


     (1) 

where t
PZya 


,  and i

j
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. Note that xF  is a Vandermonde matrix. Let 

A
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 denote random vectors (or sequences of random variables). That is, 
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, and iA , iY  are random variables. Then 

Equation (1) implies 

   or   ,0),| H( xAY


    (2) 

      ,0),| H( xYA


    (3) 

provided ),,,( 110  txxxx  , ( ji xx   if ji  ), where (| )H  denotes the conditional 

entropy function. It should be noted that if a


 happens to be an eigenvector of xF , 

then y  is also an eigenvector of xF . In general, a


 is unlikely to be an eigenvector of 

xF , because a


 represents a plaintext message which can be seen as a randomly se-

lected vector. In this situation, one can control the abscissa set 1
0}{ 


t
iix  to prevent it. 

Or, we will propose a scheme to make the probability of a


 being an eigenvector of 

xF  to be small. Given x


 and y


, one can determine whether y


 is an eigenvector of 

xF  or not. However, according to the theory of Shamir’s threshold scheme, we have  

   ).,,,|()( 11 XYYAHAH tii


     (4) 

That is, without the knowledge of 0Y , one cannot decide whether Y


 is an eigenvector 

of xF  or not. 

In summary, we may permute a plaintext message by a linear transformation which is 

uniquely determined by randomly selecting a secret set of distinct abscissas. Without 

all the permuted information, one cannot learn any information about the original 

plaintext message. In the next section, we will briefly review the notions of pseudo-

random number generator and a one-way hash function. 
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Related Topics 

In this section, we will briefly review two important notions, one-way hash function 

and pseudo-random number generator. We shall use a one-way hash function to gen-

erate the message digest of a secret message and a pseudo-random number generator 

to generate a set of abscissas. Using a pseudo-random number generator by feeding a 

random number seed to generate a set of abscissas replaces the notion of the com-

pression of a set of abscissas into a secret seed. A vector consists of the message di-

gest and the chance that the original message is an eigenvector of a linear transforma-

tion will likely be decreased. 

One-Way Hash Functions 

Informally, a function )(XfY   has one-way property which means that given any 

xX   in the domain of f , it is easy to compute a yY   in the co-domain of f  

such that )(xfy  , but it is hard to invert. That is, given a yY   in the co-domain 

of f , it is hard to compute a xX   such that )(xfy  . To easily formulate the 

one-way property, we may assume that domain and co-domain of all functions are 

sets of binary strings *}1,0{ . Formally, a one-way function can be defined as follows: 

Definition 1 One-way Function
6
 Let ** }1,0{}1,0{: f  be a function from binary 

strings to binary strings. f  is called a one-way function if it satisfies the following 

conditions:  

1. f  is injective, and for all *}1,0{x , kk xxfx |||)(|||

1

  for some integer 

0k , where || x  denotes the length of x . In other words, )(xf  is at most 

polynomially longer or shorter than x .  

2. f  is in FP, that is, given any x , the function value )(xf  can be computed 

in polynomial time.  

3. The most important condition is that 1f , the inverse of f , is not in FP. 

That is, there is no polynomial-time algorithm which, given a binary string 

y, either computes a x  such that )(xfy   or returns “no,” if no x  satis-

fies the equation )(xfy  . 

It can be noticed that, since a one-way function f  is injective, x  can be uniquely re-

covered from )(xf  by trying all x  of appropriate length. The key point is that there 

is no polynomial-time algorithm that achieves this. Until now, no function can be 

proved to be a one-way function. However, there are two functions that many people 
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suspect are one-way functions. The first is the integer multiplication function and the 

second is the exponentiation function modulo a prime. 

If )(XfY   is a one-way function, then 0)|( XYH  and 0)|( YXH , where 

(| )H is the conditional entropy function. But, by the one-way property, the equation 

0)|( YXH  provides no useful information to invert a one-way function. 

A function is called a hash function if it can take a binary string of any length and 

produce a binary string of fixed length. That is, a hash function is of the following 

general form: 

   Hashm : ],1,0[}1,0{ *  m    (5) 

for some positive integer m  and ]1,0[ m  denotes the set of integers 

}1 , ,2 ,1 ,0{ m . It is obvious that Hashm cannot be an injection for all possible 

integers m . In effect, Hashm retrieves some attributes of its input and modifies or 

prunes them into a fixed length of  m . Since we will use a hash function to generate 

a message digest in the proposed scheme, the hash function has to satisfy a security 

condition, which is called the collision-free property. It is impossible that a hash 

function satisfies the true collision-free properties. However, there are hash functions 

that can satisfy some pseudo-collision-free properties. 

Definition 2 Weakly Collision-free Property
7
 A hash function Hashm is weakly 

collision-free if, given x , there is no polynomial-time algorithm to compute a xx   

such that Hashm )(x =Hashm )(x .  

Definition 3 Strong Collision-free Property
8
 A hash function Hashm is strong 

collision-free if there is no polynomial-time algorithm to compute two x  and x  

such that xx   and Hashm )(x =Hashm )(x .  

Definition 4 One-way Hash Function
9
 A hash function Hashm is one-way if, given a 

y , there is no polynomial-time algorithm to compute a x  such that Hashm yx )( . 

Note that a one-way hash function is not a one-way function. It has been proven that a 

strong collision-free hash function must be a one-way hash function. In this article, 

we will assume that if Y Hashm )(X  is a one-way hash function, then 

   .0)|()(  YXHXH     (6) 

The above equation implies that directly computing X  from Y  might be of no use 

than directly trying out all possible appropriate X  or directly guessing X . 
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Pseudo-Random Number Generators 

A random number generator can generate a sequence of numbers, such that having 

observed the first n 1 generated numbers, we still cannot predict the n -th number 

to be generated by the generator. A random number generator can be illustrated by a 

sequence of random variables 0X , 1X , …, jX , 1jX , …, in which each random 

variable jX  obeys a probability distribution and they satisfy the following equation: 

   ).,,,|()( 110  jjj XXXXHXH    (7) 

That is, in a real random sequence, we learn no information about the future from the 

history of the random sequence. However, in a practical situation, we always assume 

that all jX  will obey the same probability distribution, )(Xp , and assume that the 

history of such a random number sequence provides information about its sample 

space and probability distribution, i.e., XX j   for all j . Even in this ideal situa-

tion, Equation (7) still holds. Another problem of the real random number generators 

is that the generated random number sequence cannot be likely reproduced by the 

same random number generator. In our proposed scheme, we really need a pseudo-

random number generator. A pseudo-random number generator can generate a set of 

number sequences indexed by a set of binary strings called random number seeds. 

Thus, the general functional form of a pseudo-random number generator is as 

follows: 

   PRNG ,: N
mn

n
m ZZ

O

O      (8) 

where m  and On  are positive integers. The parameter m  denotes the sample space, 

mZ , of the pseudo-random sequences generated by PRNG On
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depicts the set of the seeds, 
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In Equation (9) PRNG n
m  is required to transform the uniformly distributed random 

variable I , the seed, into a random variable jX   with probability distribution )(Xp  

for each j . We may use the random variable jX   to simulate the random variable 

XX j  . Now, we rewrite (8) as an equation of random variables. 

   PRNG    .,,,,,,)( 1210   jj
n
m XXXXXIO   (11) 

Based on the above equation and real pseudo-random number generators, we may 

reasonably assume that: 

      ,0)|,,,( 10  IXXH      (12) 

     and 0, ),,|()( 10  jjj XXXHXH    (13) 

      0, ),,|()( 0  jXXIHIH     (14) 

for all Ojj  , where Oj  is an integer description of the one-way property of 

PRNG On
m . The above assumptions state that a pseudo-random number generator will 

be assumed to behave like a one-way function if the corresponding Oj  is sufficiently 

large. Now, we will discuss the parameter On  of PRNG On
m . On  is the size of the set of 

seeds or the size of PRNG ][
O

O
n

n
m Z . By assumption ,,, 210 XXX   are independent, 

identically distributed )(~ Xp , and we have 

in probability. 

The equation is the so-called Asymptotic Equipartition Property (AEP). In the fol-

lowing, we list a definition related to AEP
10

: 

Definition 5 Typical Set The typical set )( jT  with respect to )(Xp  is the set of se-

quences 
j

mj Zxxx )(),,,( 110   with the property: 

We can see that if 
)(

110 ),,,( j
j Txxx   then 

(15)                                   )(),,,( lg
1

- 10 XHXXXp
j
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(16)                      .2),,,(2 ))((
110

))(( εXH-j
j
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Obviously, we require that PRNG
)(

][ O

O

O j
n

n
m TZ   for some reasonable small  . 

However, the size of 
)( OjT  is smaller than 

)(
2

XHjO . Suppose that PRNG On
m  is 

injection. Then, we have: 

   |On PRNG .2  ||  |][
)()( 





XHjj

n
n
m

OO

O

O TZ   (18) 

Thus, we may select On  as close to 
)(

2
XHjO  as possible. 

In the scheme proposed in this article, we will use a pseudo-random number genera-

tor to compress a set of secret abscissas, or as a secret abscissas generator. Suppose 

that PRNG )(    ),,,( NQNQX  , is a random number generator that can generate a 

)),(( QN -combination sequence 0x , 1x , …, 1Qx , where ix ’s are distinct and 

*
Ni Zx  . PRNG  ),,( NQX  can be implemented by selecting first Q  items of 

PRNG )(XOn
N  that are prime to N . Note that |PRNG ),,( NQZ

On | 









Q

N )(
. Using 

Pascal’s triangle, we may require 
2

)(N
Q


  or 

2

)(N
Q


  to make 

|PRNG ),,( NQZ
On | as large as possible. We call a pseudo-random number generator 

of the form PRNG  ),,( NQX secure if it satisfies the above-mentioned conditions. 

In the next section, we will propose a low cost encryption scheme based on the no-

tions elaborated here. 

Proposed Scheme 

To present the proposed scheme, we will first list the assumptions that will be used in 

the scheme.  

1. Let P  be a public large prime number.  

2. Let PRNG  ),,( NQX  be a public secure pseudo-random number generator. 

In addition, for each positive integer pair ),( nt , )(nt  , PRNG  ),,( ntx  

will generate a ) ),(( tn -combination integer sequence 0x , 1x , …, 1tx , 

randomly selected from *
nZ  given a random seed xX  .  

(17)            .H(X)),,,(lg
1

)( 110   jxxxp
j

XH 
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3. Suppose that the public-private key pairs of Alice, the sender, and Bob, the 

receiver, are ( Ae , Ad ) and ( Be , Bd ), respectively. In addition, ()eE  and 

()dD  are the associated encryption and decryption algorithms.  

4. Let HashN ),( MX  be a public secure one-way hash function that is unlikely 

to have occurred collisions, such that for all x , n  and a positive integer m , 

Hashn nZmx ),( .  

5. The sender, Alice, maintains a table to record the used hash values. The 

length of the table is at most L , where L  reflects the security degree of the 

one-way hash function HashN ),( MX . 

Based on the above assumptions, we have the following properties:  

1. By the assumption of PRNG  ),,( NQX , we have ,|()( 0XXHXH   

0),,,,1 NQXX t , where X  denotes the random variable of random 

seed, the random variable vector ),,,( 10 tXXX  PRNG  ),,( NtX , ()H  

denotes the entropy function and (| )H  denotes the conditional entropy func-

tion. Or, given PN   and tQ  , we have ,|()( 0XXHXH   

0),,1 tXX  . However, by the assumption of PRNG() being secure, we 

have ),,,|(~)( 10 tXXXXHXH  , where ~ denotes the ―almost equal to‖ 

symbol. 

2. Suppose that )(XEY e  and )(YDX d , where X  denotes the random 

variable of plain-text, Y  the random variable of cipher-text, e  the random 

variable of the public key, and d  the random variable of private key. We 

have )|()( edHdH  , 0),|( eXYH  and 0),|( dYXH .  

3. Suppose that Y HashN ),( MX neral, we have 

0),,|( MNXYH . But, by the assumption of HashN ()  being secure, we 

will have 0),,|( MNYXH  where >> denotes the ―much greater than‖ 

symbol. Or, given PN   and mM  , we have 0)|( YXH . 

Below, we first present the proposed encryption scheme, then, the proposed decryp-

tion scheme. 

Proposed Encryption Sub-scheme 

Suppose that Alice wants to send the secret message t
Pt Zaaa ),,,( 21   to Bob se-

cretly. Then, she performs the steps outlined in Algorithm 1.  
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Algorithm 1 Proposed Encryption Scheme 

Input: The large prime number P , the pseudo random number generator 

PRNG  ),,( NTX , the hash function HashN ),( MX , the public-key 

encryption algorithm )(XEe , the decryption algorithm )(XDd , the private 

key Ad , the public key Be , the message t
Pt Zaaa ),,,( 21  , and a 

published m .  

Output: The encrypted message ),,,( 10 tyyy   authenticated by the private key 

owner which is to be sent to the public key owner.  

Step 1. [Compute the Message Digest] Compute the message digest 

0a HashP ),| || || |( 21 maaa t , where the expression taaa | || || | 21   

denotes the catenation of 1a , 2a , , 1ta  and ta . (If 0a  had been used, 

Alice needs to modify the message ),,,( 21 taaa   to compute a new 0a  

that was never used. Alice, then, appends 0a  to a history table. If the length 

of the history table is bigger than L , Alice needs to publish a new m  value, 

construct a new history table of length 0, and repeat the step again.)  

Step 2. [Construct a Secret Polynomial] Use the secret message 

),,,,( 210 taaaa   to construct the secret polynomial )(Xf  

t
t XaXaa  10

 
( Pmod ).  

Step 3. [Generate a Secret Random ( 1P , t 1)-Combination 

Sequence] Randomly select a random seed x  and generate a random 

sequence PRNG ),,,(x ),1,( 10 txxPtx  .  

Step 4. [Generate Encrypted Message] Compute the encrypted message 

[ )( 0xf , )( 1xf , …, )( txf ].  

Step 5. [Generate Encrypted Random Seed with )( 0xf ] Use the 

private key Ad  and the public key Be  to compute )))(| |(( 0xfxDE
AB de .  

Step 6. [The Resulting Encrypted Message] ),,,( 10 tyyy  = 

[ )))(| |(( 0xfxDE
AB de , )( 1xf , )( 2xf ,…, )( txf ].  

Note that after performing Algorithm 1, the message ),,,( 21 taaa   was first signed 

with the private key Ad  owned by Alice. The authentication and integrity of the 

message can be verified by the public key Be  of the owner, Bob, using his private 
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key, Bd  and Alice’s public key Ae . Alice then sends the resulting encrypted message 

),,,( 10 tyyy   to the receiver, Bob, over an insecure channel. 

Proposed Decryption Sub-scheme 

Upon receiving ),,,( 10 tyyy  , Bob can use Algorithm 2 to decrypt the message. 

Algorithm 2 uses the public key Ae  and the private key Bd  to verify the encrypted 

message, i.e., that it was sent from the public key owner and the receiver is the private 

key owner. Algorithm 2 also uses the one-way hash function HashN ),( MX  to verify 

the integrity of the secret message ),,,( 21 taaa  . 

In the next section, the authors will analyze the security of the proposed scheme. 

Algorithm 2 Proposed Decryption Scheme 

Input: The large prime number P , the pseudo random number generator 

PRNG  ),,( NTX , the hash function HashN ),( MX , the public-key 

encryption algorithm )(XEe , the decryption algorithm )(XDd , the private 

key Bd , the public key Ae , and the encrypted message ),,,( 10 tyyy  .  

Output: Reject the encrypted message or accept the decrypted message 
t
Pt Zaaa ),,,( 21   whose authentication, sent from the public key owner, 

and integrity have been verified by the public key owner.  

Step 1. [Recover the Secret Seed] Use the public key Ae  and the private 

key Bd  to decrypt the random seed )(| | 0xfx  

)))))(| |(((( 0xfxDEDE
ABBA dede . 

Step 2. [Recover the ( 1P , t 1)-Combination Sequence] Use the 

seed x  to generate the ( 1P , t 1)-combination sequence, 

PRNG ),,,,(x )1,,( 210 txxxtPx  .  

Step 3. [Recover the Secret Message] Compute the interpolating 

polynomial ][)( XZxf P  from the point sets { ))(,( 00 xfx , ))(,( 11 xfx , 

…, ))(,( tt xfx } PP ZZ  . The coefficients of the polynomial 

][)( XZxf P  would be the secret message ),,,( 10 taaa  . 

Step 4. [Verify the Message Digest] Check whether 

0a HashP ),| || || |( 21 maaa t  or not. If the equality does not hold, reject 

the message. If it passes the verification, accept the message as being sent 

from the public key Ae  owner and its integrity has not been destroyed. 
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Analysis 

The attacks to the proposed scheme can be classified into the following classes:  

1. Type 1 attack is eavesdropping or passive wiretapping. In general, the attack 

cannot be detected. This is the reason why we construct a cryptosystem to 

encrypt sensitive or secret message for preventing eavesdropping. In this 

attack we assume that the sender, Alice, and the receiver, Bob, are trusted 

parties. The eavesdropper, Eve, wants to learn the secret message from the 

encrypted message.  

2. Type 2 attack is tampering or active wiretapping. The attacker, Mallory, 

modifies the encrypted message or forges an encrypted message to fool 

either Alice or Bob or the two of them.  

3. Type 3 attack is an attack coming from the receiver. Bob forges a message 

and claims that it has been sent by Alice.  

4. Type 4 attack is an attack coming from the sender. Alice wants to deny a 

message which she has sent to Bob.  

It has to be noted that if the proposed scheme cannot prevent type 2 attacks, Alice can 

use the weak point to deny having sent a sensitive message and Bob can claim that he 

has received a message that Alice has never sent. However, types 3 and 4 attacks are 

more powerful than type 2 attacks because Alice and Bob have more key information 

than Mallory. 

Below, we restate the assumptions listed in the previous section. 

Let ),,,( 21 taaa   represents the random vector of plain-text to be encrypted, and 

),,,( 10 tyyy   - the random vector of the resulting encrypted cipher-text. Let x  

represents the random variable of the random number seed chosen by Alice, 

),,,,(x 210 txxx  =PRNG  ),1,( Ptx  . And, let ),( de  denote the random vector that 

represents the public-private key pair. In addition, let 0,xy ))(| |( 0xfxD
Ad  and 

)( 0,0 xe yEy
B

 . 

1. 0),,,|,,,( 1021  tt aaaaaaH  , where 0),,,|( 210 taaaaH   (i.e., 

0a =HashP ),| || || |( 21 maaa t ) and ),,,( 21 taaa    is the random vector, 

distinct from ),,,( 21 taaa  , such that 0a =HashP ),| || || |( 21 maaa t  .  

2. 0),1,,,,|( 10  PtxxxxH t , where 0),1,|,,,( 10  PtxxxxH t .  

3. 0)|( deH  and 0)|( edH .  
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4. 0)))(| |(|( 00, xfxyH x , where 0))),(| |(|( 00, Ax dxfxyH , and 

0)|( 00, yyH x , where 0),|( 00, Bx dyyH . 

Type 1 Attack to the Proposed Scheme 

The type 1 attack is a ciphertext-only attack. The proposed scheme uses a random 

seed x  to generate a linear transformation on 1t
PZ , and the matrix representation of 

the linear transformation is the so-called Vandermonde matrix, such as the following: 

According to the assumption about the pseudo-random number generator 

PRNG  ),,( NQX , the )1,1(  tP -combination integer sequence ),,,( 10 txxx   

generated by PRNG  ),1,( Ptx   is a set of distinct integers, i.e. Pji Zxx   

whenever ji  . Thus, the corresponding Vandermonde matrix is nonsingular. That 

is, given a random seed x  and ( )( 0xf , )( 1xf ,…, )( txf ), Eve can determine a 

unique ),,,( 10 taaa  . Thus, we have 

   ,0),|(  xafH x


 and    (20) 

   ),|()|( xaHxfH x


     (21) 

where xf


( )( 0xf , )( 1xf ,…, )( txf ), a


),,,( 10 taaa  , and x


),,,(x 10 txx  . 

However, the secret random seed x  and )( 0xf  are encrypted by the public-key Be , 

and only Bob can decrypt it and no one else can do that providing the public key 

encryption cryptosystem is secure. Without x  and )( 0xf , Eve cannot learn any 

information about the secret message ),,,( 10 taaa  . According to the theory of 

interpolating polynomials, we have 

   )|,(),( yxaHxaH  , or    (22) 

   ),,|()( yxaHaH      (23) 

(19)                          .
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where y = ),,,( 21 tyyy  ( )( 1xf , )( 2xf ,…, )( txf ). Suppose that Alice uses the 

random seed x  repeatedly. Then, Eve may have learnt the )1,1(  tP -combination 

sequence ),,,( 10 txxx  . However, according to the theory of interpolating 

polynomials, without )( 0xf  Eve cannot uniquely determine the polynomial function 

)(Xf . According to the theory of Shamir’s ),( nt -threshold secret sharing scheme, 

the secret message ),,,( 10 taaa   is protected by a perfect secret sharing scheme 

providing the public-key cryptosystem is secure. That is, Eve has to solve the 

following problem to perform the attack. 

   Given 0y ,  

   compute )(| | 0xfx  such that   (24) 

   ))).(| |(( 00 xfxDEy
AB de  

Not considering the signing operation, suppose that Alice uses a public-key 

cryptosystem to encrypt the secret message ),,,( 21 taaa  . It will need t  encryption 

operations to perform the encryption of the message. In the proposed scheme, we use 

a pseudo-random number generator operation and a )1()1(  tt -linear 

transformation operation to replace the t 1 public-key operations. (Because the 

complexity of the public-key encryption operation is the same as the complexity of 

the public-key decryption operation, we call either one of them a public-key 

operation.) In general, a public-key operation is costly. So, the proposed scheme is 

less costly. For the same reason, the decryption operation of the proposed scheme 

uses a pseudo-random number generator operation and an interpolating polynomial 

operation to replace the t 1 public-key operations. 

In conclusion, given a secure public-key cryptosystem and not considering the 

signing operation the proposed scheme can prevent the ciphertext-only attacks; it uses 

two pseudo-random number generator operations, a linear transformation operation 

and an interpolating polynomial operation to reduce the number of required public-

key operations to two. 

Type 2 Attack to the Proposed Scheme 

If Mallory intercepts an encrypted message—simply replaces one iy  with iy , and 

inserts it back into the message—Bob will discover the attack in Step 4 of 

Algorithm 2. To make such an attack meaningful, she has to perform an attack of 

type 1 to the encrypted message. However, without the help of Alice or Bob, she 

cannot compute the secret message ),,,( 10 taaa   providing the public-key 

cryptosystem is secure. For this reason, we consider type 2 attack, a known-plaintext 
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attack, to the proposed scheme. In addition, Mallory cannot learn the sequence 

),,,( 10 txxx   from the two sequences ),,,( 10 taaa   and ),,,( 10 tyyy   unless 

Alice repeatedly uses the same secret seed x . It is unlikely to happen. However, we 

assume that Mallory knows the three sequences ),,,( 10 txxx  , ),,,( 10 taaa   and 

),,,( 10 tyyy  . And, she wants to change ia  to ia , where 0 ti  . 

After computing the digest message 0a HashP ),| || || || |( 1 maaa ti   , Mallory, 

then, computes: 

where t
t

i
i XaXaXaXaaXf  2

210)( . Now, Mallory’s attack is 

reduced to computing 0y  using the following equation: 

   ))).(| |(( 00 xfxDEy
AB de     (26) 

By the assumption about the security of the pseudo random number generator, 

Mallory cannot use the sequence ),,,( 10 txxx   to learn the secret random seed x . 

Even though she uses a new random seed x  to compute a new sequence, ( )( 0xf  , 

…, )( txf  ), she still needs the private key Ad  to compute a new 

))).(| |(( 00 xfxDEy
AB de   Mallory uses the following equation to compute )( 0xf  

for learning the secret seed x . 

Now, Mallory will obtain the following equation: 

   ))).(| |(( 00 xfxDEy
AB de    (28) 

(25)                           ,
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From the above equation, without Bob’s help, Mallory cannot learn the secret random 

seed x  either. Suppose that Mallory and Bob want to fool Alice. However, without 

the private key Ad , Mallory cannot compute 0y . Thus, Mallory and Bob cannot fool 

Alice. 

In conclusion, if the public-key cryptosystem is secure, only Alice can compute the 

value 0y ; no one else can do that. Thus, the proposed scheme uses two public-key 

operations to prevent type 2 attacks. All the published information Ae , Be , and 

),,,( 10 tyyy   does not provide useful information to accomplish type 2 attacks even 

with the knowledge about the repeated uses of the same random seed x . 

Type 3 Attack to the Proposed Scheme 

Bob can perform all attacks that Mallory can perform. In addition, Bob has an 

additional piece of information, the private key Bd . Using this private key, Bob can 

easily get the secret random seed x . So, we suppose that Bob wants to forge a 

message ),,,( 21 taaa   , then claim that it was sent from Alice. Bob may use the hash 

function HashN ),( MX  to compute 0a HashP ),| || |( 1 maa t  . He randomly 

selects a seed x  and generates a )1,1(  tP -combination sequence ),,,( 10 txxx   . 

Then, he computes 

where t
t XaXaXaaXf  2

210)( . But, Bob does not have the private 

key Ad ; he, therefore, cannot directly use the formula )))(| |(( 00 xfxDEy
AB de   to 

compute 0y . Consider the following equation, 

   )).(()(| | 00 yDExfx
BA de     (30) 

Suppose that Proji(PRNG iXNX )),(  is the i-th projection function. Equation (30) 

can be rewritten as: 

   (| | fx  Proj0(PRNG( )).(())), 0yDEPx
BA de   (31) 
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Table 1: History of Messages that Alice has Sent. 

 ,0 ia   ix   ,0 ix   ,0 iy  

 1,0a   1x   1,0x   1,0y  

 2,0a   2x   2,0x   2,0y  

    

 ,0 mla   mlx   ,0 mlx   ,0 mly  

Thus, Bob’s attack is reduced to solving the following simultaneous equations: 

 (| | fX  Proj0(PRNG )),(())),( 0YDEPX
BA de    (32) 

 (f  Proj0(PRNG ())),(
0





t

i

iaPX Proj0(PRNG( P) (mod ))), iPX  (33) 

   0a HashP bmaa t  ),| || |( 1     (34) 

For any t
Pt Zaaa  ),,,( 21   and any random seed x , there should exist a solution 

),( 0yx   of the above simultaneous equations since Alice can compute such a 

solution. However, given 0y , Equation (32) uniquely determines a x . But x  does 

not necessarily satisfy Equation (33). Note that if ),( 0yx   is a solution, the 

computation of 0y  from 0x  requires a one-way function PRNG  ),,( NTX . Under our 

assumptions, Bob has to exhaustively search for 0y  to compute x  such that it 

satisfies Equation (33). Suppose that Bob controls the value of 0a  in order to find a 

proper sequence ),,,( 21 taaa    that satisfies Equation (33). However, in order to do 

that, Bob needs to break the secure one-way hash function HashN ),( MX . Now, we 

add one more assumption to increase Bob’s abilities. Bob has collected all messages 

that Alice had sent to him and constructed Table 1, where ),,,( ,,2,1 itii aaa   is the i-

th message that Alice has sent, 

   ia ,0 =HashP ),,| || || |( ,,2,1 maaa itii  )  (35) 

    



t

j

j
jii XaXf

0

, ,)(    (36) 
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ix  is the i-th random seed, ix ,0  is the first random number generated by 

PRNG ),1,( Ptxi  , and 

   ))).(| |(( ,0,0 ii
i

dei xfxDEy
AB

    (37) 

It should be noted that the computation of ia ,0  is independent from the choice of the 

random seed ix . Thus, if ml  is sufficiently large, there is a chance that Bob can 

change the value of ),,,( 21 taaa    such that 0a  can be found in Table 1. Bob then 

selects the corresponding random seed ix  and uses the corresponding iy ,0  as 0y . 

Alice cannot deny the resulting encrypted message ),,,( 10 tyyy   . However, Alice 

controls the length of the history table such that it is always smaller than L . So, we 

have Lml  . This means that ml  can be too large and the new hash value will 

unlikely collide with the used hash values. 

In conclusion, the proposed scheme can effectively prevent Bob’s attack. 

Type 4 Attack to the Proposed Scheme 

Type 4 attack is performed by the sender, Alice. She wants to deny sending a secret 

message to Bob. If Bob can perform the type 3 attack, Alice can easily deny a 

message which she has sent. In a previous subsection, we have shown that without the 

help of Alice Bob is unlikely to perform a successful type 3 attack. Note that 0y  is 

protected by three one-way-like functions, HashN(), PRNG(), and ()
AdD , and only 

Alice can perform the public-key operation ()
AdD . Thus, the 0y  value of an 

encrypted message can be easily computed only by the sender, Alice. If Alice denies 

an encrypted message, Bob can publish the random seed x , 0y , and )( 0yD
Bd , 

( )( 0xf , )( 1xf , …, )( txf ). Anyone can use the published information to prove that 

the encrypted message has been sent from Alice to Bob. Alice cannot deny it. 

In summary, the proposed scheme provides undeniable services. 

Conclusions 

In this article, we use an information permutation scheme (a )1,1(  tt -threshold 

scheme) to permute and break a message into a sequence of sub-blocks, such that 

without all sub-blocks we cannot recover the original message. The information 

breaking scheme is a polynomial-time operation. By encrypting a sub-block, we can 

protect the whole message. Thus, it is a low-cost scheme. In addition, we have shown 

that the proposed scheme preserves such cryptographic operations as information 
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authentication, information integrity, unforgeability, and undeniablility, while still 

maintaining a low cost. 

First, the authors have presented the proposed information permutation and breaking 

scheme, and analyzed its security. The evidence for its efficiency is that it is a matrix 

multiplication modulo a prime. Next, the security requirements of one-way hash 

function and secure pseudo-random number generator have been given. An important 

contribution of the presented work is that the authors use information entropy to 

describe the notion of the one-way property that is believed to be a problem in 

computational complexity. This article has also established estimation of the size of 

the set of the random number seeds to a secure pseudo-random number generator that 

does not consider the algorithm that implements the generator. 
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