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Abstract: When implementing the DSmT, a difficulty may arise from the pos-
sible huge dimension of hyperpower sets, which are indeed free structures. How-
ever, it is possible to reduce the dimension of these structures by involvinglogical
constraints. In this paper, the logical constraints will be related to a predefined or-
der over the logical propositions. The use of such orders and their resulting logical
constraints will ensure a great reduction of the model complexity. Such results will
be applied to the definition of continuous DSm models. In particular, a simplified
description of the continuous impreciseness is considered, based on impreciseness
intervals of the sensors. From this viewpoint, it is possible to manage the contra-
dictions between continuous sensors in a DSmT manner, while the complexityof
the model stays handlable.
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1 Introduction

Recent advances[1] in the Dezert Smarandache Theory have shown that this theory
was able to handle the contradiction between propositions in a quite flexible way. This
new theory has been already applied in different domains;eg.:

• Data asociation in target tracking [2] ,

• Environmental prediction [3] .

Although free DSm models are defined over hyperpower sets, which sizes evolve ex-
ponentially with the number ofatomicpropositions, it appears that the manipulation
of the fusion rule is still manageable for practical problems reasonnably well shaped.
Moreover, the hybrid DSm models are of lesser complexity.

If DSmT works well for discret spaces, the manipulation of continous DSm models is
still an unknown. A question first arises:what could be an hyperpower set for a contin-
uous DSm model?Such first issue does not arises so dramatically in Dempster Shafer
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Theory or for Transfer Belief Models[4]. In DST, a continuous proposition could just
be a measurable subset. On the other hand, a free DSm model, defined over an hyper-
power set, will imply that any pair of propositions will havea non empty intersection.
This is desappointing, since the notion ofpoint (a minimal non empty proposition)
does not exist anymore in an hyperpower set.

But even if it is possible to define a continuous propositional model, the manipulation
of continuous basic belief assignment is still an issue[5][6]. In [5] , Ristic and Smets
proposed a restriction of the bba to intervals ofIR . It was then possible to derive a
mathematical relation between a continuous bba density andits Bel function.

In this paper, the construction of continuous DSm models is proposed. This construc-
tion is based on a constrained model, where the logical contraints are implied by the
definition of an order relation over the propositions.

A one-dimension DSm model will be implemented, where the definition of the basic
belief assignment relies on ageneralized notion of intervals. Although this construc-
tion has been fulfilled on a different ground, it shares some surprizing similarities with
Ristic and Smets viewpoint. As in [5], the bba will be seen as density defined over a
2-dimension measurable space. We will be able to derive the Belief function from the
basic belief assignment, by applying an integral computation. At last, the conjunctive
fusion operator,⊕, is derived by a rather simple integral computation.

Section 2 makes a quick introduction of the Dezert Smarandache Theory. Section 3
is about ordered DSm models. In section 4, a continuous DSm model is defined. This
method is restricted to only one dimension. The related computation methods are de-
tailed. In section 5, our algorithmic implementation is described and an example of
computation is given. The paper is then concluded.

2 A short introduction to the DSmT

2.1 Basis

The theory and its meaning are widely explained in [1].

TheDezert Smarandache Theorybelongs to the family ofEvidence Theories. As the
Dempster Shafer Theory[7][8] or the Transferable Belief Models[4], the DSmT is a
framework for fusing belief informations, originating from independent sensors. Free
DSm models are defined over Hyperpower sets, which arefully open-world extensions
of sets. It is possible to restrict this full open-world hypothesis by adding propositional
constraints, resulting in the definition of anhybrid Dezert Smarandache model.

Hyperpower set. Let Φ = {φi/i ∈ I} be a set of propositions (finite or infinite).
The hyperpower set< Φ > is the boolean pre-algebra freely generated byΦ and the
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boolean operators∧ (AND) and∨ (OR) .It does not contains the negation¬.

Example.

< a, b, c >=
{

a, b, c, a ∧ b ∧ c, a ∨ b ∨ c, a ∧ b, b ∧ c, c ∧ a,
a ∨ b, b ∨ c, c ∨ a, (a ∧ b) ∨ c, (b ∧ c) ∨ a, (c ∧ a) ∨ b,
(a ∨ b) ∧ c, (b ∨ c) ∧ a, (c ∨ a) ∧ b, (a ∧ b) ∨ (b ∧ c) ∨ (c ∧ a)

}

It is easy to verify that this set is left unchanged by any application of the operators∧
and∨. For example:

(a ∧ b) ∧
(

(b ∧ c) ∨ a
)

= (a ∧ b ∧ b ∧ c) ∨ (a ∧ b ∧ a) = a ∧ b .

Definition. The relation⊂ is defined over< Φ > by:

∀φ, ψ ∈< Φ > , φ ⊂ ψ
∆

⇐⇒ φ ∧ ψ = φ .

Dezert Smarandache Model. Assume thatΦ is a finite set. A Dezert Smarandache
model (DSmm) is a pair(Φ,m), whereΦ is a set of propositions and thebasic belief
assignmentm is a non negatively valued function defined over< Φ > such that:

∑

φ∈<Φ>

m(φ) = 1 .

Belief Function. Assume thatΦ is a finite set. The belief functionBel related to a
bbam is defined by:

∀φ ∈< Φ >, Bel(φ) =
∑

ψ∈<Φ>:ψ⊂φ

m(ψ) . (1)

The equation (1) is invertible:

∀φ ∈< Φ >, m(φ) = Bel(φ) −
∑

ψ∈<Φ>:ψ(φ

m(ψ) .

Fusion rule. Assume thatΦ is a finite set. For a given universeΦ , and two basic be-
lief assignmentsm1 andm2, associated to independent sensors, the fused basic belief
assignment ism1 ⊕m2 , defined by:

m1 ⊕m2(φ) =
∑

ψ1,ψ2∈<Φ>:ψ1∧ψ2=φ

m1(ψ1)m2(ψ2) . (2)
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2.2 Some extensions

Between sets and hyperpower sets.Sets and hyperpower sets are tightly related
structures. First at all, a set (with∩,∪ operators and complement) is a boolean algebra,
while an hyperpower set is a free boolean pre-algebra. It is clear that a free boolean
pre-algebra could be completed to a boolean algebra, so thatan hyperpower set could
be seen as a substructure of a set. More precisely< Φ >⊂ B(Φ) whereB(Φ) is
the free boolean algebra generated byΦ . In particular, whenΦ is finite, the boolean
algebraB(Φ) is generated by:

{

∧

i∈I

ǫi

/

∀i ∈ I, ǫi ∈ {φi,¬φi}

}

.

Followingly,B(Φ) is isomorph to a set structure of2card(I) elements, in the finite case.

Conversely, a set could be interpreted as aconstrained pre-algebra, ie. a “constrained
hyperpower set”. More precisely, whenΦ is a finite set,1 this set is isomorph to the
boolean pre-algebra generated byΦ, ∧ and∨, and verifying the logical constraints:

∀i, j ∈ I, i 6= j ⇒ φi ∧ φj = ⊥ .

In this construction, the empty proposition⊥ has been implicitely defined. However,
it is possible (see later) to build constrained pre-algebrawithout the adjunction of the
empty proposition⊥ .

One advantage of constrained boolean pre-algebra is that they are less complex and
“fractalized” than a simple hyperpower set. Jean Dezert andFlorentin Smarandache
have extended the DSmT fusion operator so has to involve any kind of pre-algebra (hy-
brid DSmT [1]). In this presentation, we will only focuse on pre-algebra constrained
without adjunction of⊥ , and in this case, the fusion operator of the free DSmT is kept
unchanged.

Partially open world without ⊥ . Let Γ ⊂< Φ > × < Φ > and define the pre-
algebra< Φ >Γ generated byΦ , ∧ , ∨ and constrained by:

∀(φ, ψ) ∈ Γ , φ = ψ .

Example. Let consider again the caseΦ = {a, b, c} . But now, let us introduce the
constraintsa ∧ b = a ∧ c = b ∧ c , which means (for example) using a setΓ =
{

(a ∧ b, a ∧ c), (a ∧ c, b ∧ c)
}

. Then it is deduceda ∧ b = a ∧ c = b ∧ c = a ∧ b ∧ c.
It follows (a ∧ b) ∨ c = c, (b ∧ c) ∨ a = a and(c ∧ a) ∨ b = b. It is also deduced
(a ∨ b) ∧ c = (b ∨ c) ∧ a = (c ∨ a) ∧ b = (a ∧ b) ∨ (b ∧ c) ∨ (c ∧ a) = a ∧ b ∧ c . By
discarding these cases from the free hyperpower< a, b, c >, it is deduced:

< a, b, c >Γ=
{

a, b, c, a ∧ b ∧ c, a ∨ b ∨ c, a ∨ b, b ∨ c, c ∨ a
}

1WhenΦ is infinite, this result requires “infinite∨-ing.”
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It is noticed that< Φ >Γ is left unchanged by any application of the operators∧ and
∨ (and does not contains the external proposition⊥). WhenΦ is finite, the definition
of bbam, beliefBel and fusion⊕ is thus kept unchanged.

• A basic belief assignmentm is a non negatively valued function defined over
< Φ >Γ such that:

∑

φ∈<Φ>Γ

m(φ) = 1 .

• The belief functionBel related to a bbam is defined by:

∀φ ∈< Φ >Γ, Bel(φ) =
∑

ψ∈<Φ>Γ:ψ⊂φ

m(ψ) .

• Being given two basic belief assignmentsm1 andm2, the fused basic belief
assignmentm1 ⊕m2 is defined by:

m1 ⊕m2(φ) =
∑

ψ1,ψ2∈<Φ>Γ:ψ1∧ψ2=φ

m1(ψ1)m2(ψ2) .

These extended definitions will be applied subsequently.

3 Ordered DSm model

In order to reduce the complexity of the free DSm model, it is necessary to introduce
logical constraints which will lower the size of the pre-algebra. Such constraints may
appear clearly in the hypotheses of the problem. In this case, constraints come naturally
and approximations may not be required. However, when the model is too complex
and there are no explicit constraints for reducing this complexity, it is necessary to
approximate the model by introducing some new constraints.Two rules should be
applied then:

• Only weaken informations2; do not produce information from nothing,

• minimize the information weakening.

First point garantees that the approximation does not introduce false information. But
some significant informations (eg.contradictions) are possibly missed. This drawback
should be avoided by second point.

In order to build a good approximation policy, some externalknowledge, like distance
or order relation among the propositions could be used. Behind these relations will be
assumed some kind of distance between the informations:more are the informations
distant, more are their conjunctive combination valuable.

2Typically, a constraint likeφ∧ψ∧η = φ∧ψ will weaken the information, by erasingη fromφ∧ψ∧η .
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3.1 Ordered atomic propositions

Let (Φ,≤) be an ordered set of propositions. This order relation is assumed to describe
the relative distance between the information. For example, the relationφ ≤ ψ ≤ η
implies thatφ andψ are closer informations thanφ and η . Thus, the information
contained inφ∧ η is stronger than the information contained inφ∧ψ . Of course, this
comparison does not matter when all the information is kept,but when approximations
are necessary, it will be useful to be able to choose the best information.

Sketchy example. Assume that 3 independent sensors are giving3 measures about
a continuous parameter, that isx, y andz. The parametersx, y, z are assumed to be
real values, not of theset IR but of its “pre-algebraic” extension (theoretical issues
will be clarified later3). The fused information could be formalized by the proposition
x ∧ y ∧ z (in a DSmT viewpoint). What happen if we want to reduce the information
by removing a proposition. Do we keepx ∧ y , y ∧ z or x ∧ z ? This is of course
an information weakening. But it is possible that one information is better than an
other. At this stage, the order between the valuesx, y, z will be involved. Assume for
example thatx ≤ y < z . It is clear that the propositionx ∧ z indicates a greater
contradiction thanx ∧ y or y ∧ z . Thus, the propositionx ∧ z is the one which should
be kept! The discarding constraintx ≤ y ≤ z ⇒ x ∧ y ∧ z = x ∧ z is implied then.

3.2 Associated pre-algebra and complexity.

In regard to the previous example, the pre-algebra associated to the ordered proposi-
tions(Φ,≤) is< Φ >Γ , whereΓ is defined by:

Γ =
{

(φ ∧ ψ ∧ η, φ ∧ η)
/

φ, ψ, η ∈ Φ andφ ≤ ψ ≤ η
}

.

The following property give an approximative bound of the size of< Φ >Γ in the case
of a total order.

Proposition 1 Assume that(Φ,≤) is totally ordered. Then,< Φ >Γ is a substructure
of the setΦ2 .

proof. Since the order is total, first notice that the added constraints are:

∀φ, ψ, η ∈ Φ , φ ∧ ψ ∧ η = min{φ, ψ, η} ∧ max{φ, ψ, η} .

Now, for anyφ ∈ Φ , defineφ̆ by:

φ̆ =
{

(ϕ1, ϕ2) ∈ Φ2
/

ϕ1 ≤ φ ≤ ϕ2

}

3In particular, as we are working in a pre-algebra,x ∧ y makes sense and it is possible thatx ∧ y 6= ⊥

even whenx 6= y .
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It is noteworthy that:

φ̆ ∩ ψ̆ =
{

(ϕ1, ϕ2) ∈ Φ2
/

ϕ1 ≤ min{φ, ψ} and max{φ, ψ} ≤ ϕ2

}

and

φ̆ ∩ ψ̆ ∩ η̆ =
{

(ϕ1, ϕ2) ∈ Φ2
/

ϕ1 ≤ min{φ, ψ, η} and max{φ, ψ, η} ≤ ϕ2

}

.

By definingm = min{φ, ψ, η} andM = max{φ, ψ, η} , it is deduced:

φ̆ ∩ ψ̆ ∩ η̆ = m̆ ∩ M̆ . (3)

LetA ⊂ P(Φ2) be generated by̆φ|φ∈Φ with ∩ and∪ , ie.:

A =
⋃

n≥0

{

n
⋃

k=1

(

φ̆k ∩ ψ̆k
)

/

∀k , φ̆k, ψ̆k ∈ Φ

}

.

Then, by (3) is defined the mapping:

` :











< Φ >Γ −→ A
n
∨

k=1

nk
∧

l=1

φk,l 7−→

n
⋃

k=1

nk
⋂

l=1

φ̆k,l , whereφk,l ∈ Φ

which is an onto morphism of pre-algebra.

Lemma 1 Assume:

n
⋃

k=1

(

φ̆1
k ∩ φ̆

2
k

)

⊂

m
⋃

l=1

(

ψ̆1
l ∩ ψ̆

2
l

)

, whereφjk , ψ
j
l ∈ Φ .

Then:

∀k , ∃l , min{φ1
k, φ

2
k} ≤ min{ψ1

l , ψ
2
l } and max{φ1

k, φ
2
k} ≥ max{ψ1

l , ψ
2
l }

and
∀k , ∃l , φ̆1

k ∩ φ̆
2
k ⊂ ψ̆1

l ∩ ψ̆
2
l .

Proof of lemma. Let k ∈ [[1, n]] .
Definem = min{φ1

k, φ
2
k} andM = max{φ1

k, φ
2
k} .

Then holds(m,M) ∈ φ̆1
k ∩ φ̆

2
k , implying (m,M) ∈

⋃m
l=1

(

ψ̆1
l ∩ ψ̆

2
l

)

.

Let l be such that(m,M) ∈ ψ̆1
l ∩ ψ̆

2
l .

Thenm ≤ min{ψ1
l , ψ

2
l } andM ≥ max{ψ1

l , ψ
2
l } .

Followingly, φ̆1
k ∩ φ̆

2
k ⊂ ψ̆1

l ∩ ψ̆
2
l .
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22

Frommin{φ1
k, φ

2
k} ≤ min{ψ1

l , ψ
2
l } andmax{φ1

k, φ
2
k} ≥ max{ψ1

l , ψ
2
l } is also

deduced(φ1
k ∧ φ

2
k) ∧ (ψ1

l ∧ ψ
2
l ) = φ1

k ∧ φ
2
k (definition ofΓ) .

This property just meansφ1
k ∧ φ

2
k ⊂ ψ1

l ∧ ψ
2
l . It is lastly deduced:

Lemma 2 Assume:

n
⋃

k=1

(

φ̆1
k ∩ φ̆

2
k

)

⊂
m
⋃

l=1

(

ψ̆1
l ∩ ψ̆

2
l

)

, whereφjk , ψ
j
l ∈ Φ .

Then:
n
∨

k=1

(

φ1
k ∧ φ

2
k

)

⊂
m
∨

l=1

(

ψ1
l ∧ ψ

2
l

)

.

From this lemma, it is deduced that̀is one to one.
At last ` is an isomorphism of pre-algebra, and< Φ >Γ is a substructure of
Φ2 .

222

3.3 General properties of the model

In the next section, the previous construction will be extended to the continuous case,
ie. (IR,≤) . However, a strict logical manipulation of the propositions is not sufficient
and instead a measurable generalization of the model will beused. It has been seen that
a proposition of< Φ >Γ could be described as a subset ofΦ2 . In this subsection, the
proposition model will be characterized precisely. This characterization will be used
and extended in the next section to the continuous case.

Proposition 2 Letφ ∈< Φ >Γ .
Then`(φ) ⊂ T , whereT =

{

(φ, ψ) ∈ Φ2
/

φ ≤ ψ
}

.

Proof. Obvious, since∀φ ∈ Φ , φ̆ ⊂ T .

222

Definition 1 A subsetθ ⊂ Φ2 is increasingif and only if:

∀ (φ, ψ) ∈ θ , ∀η ≤ φ , ∀ζ ≥ ψ , (η, ζ) ∈ θ .

Let U =
{

θ ⊂ T
/

θ is increasing
}

be the set of increasing subsets ofT . Notice
that the intersection or the union of increasing subsets areincreasing subsets, so that
(U ,∩,∪) is a pre-algebra.
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Proposition 3 For any choice ofΦ ,
{

`(φ)
/

φ ∈< Φ >Γ

}

⊂ U .
WhenΦ is finite,U =

{

`(φ)
/

φ ∈< Φ >Γ

}

.

Proof of ⊃ . Obvious, sincĕφ is inceasing for anyφ ∈ Φ .

Proof of ⊂ . Let θ ∈ U and let(a, b) ∈ θ .
Sinceă ∩ b̆ =

{

(α, β) ∈ Φ2
/

α ≤ a andβ ≥ b
}

andθ is increasing, it follows

ă ∩ b̆ ⊂ θ .
At last,θ =

⋃

(a,b)∈θ ă ∩ b̆ =`

(

∨

(a,b)∈θ a ∧ b
)

.

Notice that
∨

(a,b)∈θ a ∧ b is actually defined, sinceθ is finite whenΦ is finite.

222

When infinite∨-ing are allowed, notice thatU may be considered as a model for
< Φ >Γ even ifΦ is infinite. In the next section, thecontinuouspre-algebra related to
(IR,≤) will be modelled by themeasurable increasing subsetsof

{

(x, y) ∈ IR2
/

x ≤ y
}

.

4 Continuous DSm model

In this section, the caseΦ = IR is considered.

Typically, in a continuous model, it will be necessary to manipulate any measurable
proposition, and for example intervals. It comes out that most intervals could not be
obtained by a finite logical combinaison of the atomic propositions, but rather by infi-
nite combinations. For example, considering the set formalism, it is obtained[a, b] =
⋃

x∈[a,b]{x} , which suggests the definition of the infinite disjunction “
∨

x∈[a,b] x”. It
is known that infinite disjunctions are difficult to handle ina logic. It is better to manip-
ulate the models directly. The prealgebra to be constructedshould verify the property
x ≤ y ≤ z ⇒ x ∧ y ∧ z = x ∧ z . As discussed previously and since infinitary dis-
junctions are allowed, a model for such algebra are the measurable increasing subsets.

4.1 Measurable increasing subsets

A measurable subsetA ⊂ IR2 is a measurable increasing subset if:
{

∀ (x, y) ∈ A , x ≤ y ,
∀ (x, y) ∈ A , ∀a ≤ x , ∀b ≥ y , (a, b) ∈ A .

The set of measurable increasing subsets is denotedU .

Example. Let f : IR → IR be a non decreasing measurable mapping such that
f(x) ≥ x for anyx ∈ IR. The set

{

(x, y) ∈ IR2
/

f(x) ≤ y
}

is a measurable increasing
subset.
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“Points”. For anyx ∈ IR, the measurable increasing subsetx̆ is defined by:

x̆ =
{

(a, b) ∈ IR2
/

a ≤ x ≤ b
}

.

The setx̆ is of course a model for the pointx ∈ IR within the pre-algebra (refer to
section 3).

Generalized intervals. A particular class of increasing subsets, the generalized in-
tervals, will be useful in the sequel.

For anyx ∈ IR, the measurable sets̀x andx́ are then defined by:

{

x̀ =
{

(a, b) ∈ IR2
/

a ≤ b andx ≤ b
}

,

x́ =
{

(a, b) ∈ IR2
/

a ≤ b anda ≤ x
}

.

The following properties are derived:

x̆ = x̀ ∩ x́ , x̀ =
⋃

z∈[x,+∞[

z̆ and x́ =
⋃

z∈]−∞,x]

z̆

Moreover, for anyx, y such thatx ≤ y, it comes:

x̀ ∩ ý =
⋃

z∈[x,y]

z̆ .

As a conclusion, the set̀x, x́ andx̀ ∩ ý (with x ≤ y) are the respective models for the
intervals[x,+∞[ , ] −∞, x] and[x, y] within the pre-algebra. Naturally, the accents`
and́ are used respectively for opening and closing the intervals.

At last, the set̀x ∩ ý, wherex, y ∈ IR are not constrained, constitutes a generalized
definition of the notion of interval. In the casex ≤ y, it works like “classical” inter-
val, but in the casex > y, it is obtained a new class of intervals with negative width.
Whatever,̀x ∩ ý comes with a non empty inner, and may have a non zero measure.

The widthδ = y−x
2 of the interval̀x∩ ý could be considered as a measure of contradic-

tion associated with this proposition, while its centerµ = x+y
2 should be considered

as its median value. The interpretation of the measure of contradiction is left to the
human. Typically, a possible interpretation could be:

• δ < 0 means contradictory informations,

• δ = 0 means exact informations,

• δ > 0 means imprecise informations.
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It is also noteworthy that the set of generalized intervals

I = {x̀ ∩ ý/x, y ∈ IR}

is left unchanged by the operator∩ , as seen in the following proposition 4 :

Proposition 4 (Stability) Let x1, x2, y1, y2 ∈ IR .
Definex = max{x1, x2} andy = min{y1, y2} .
Then

(

x̀1 ∩ ý1
)

∩
(

x̀2 ∩ ý2
)

= x̀ ∩ ý .

Proof is obvious.

This last property make possible the definition of basic belief assignment over gener-
alized intervals only. This assumption is clearly necessary in order to reduce the com-
plexity of the evidence modelling. Behind this assumption is the idea that a continuous
measure is described by an imprecision/contradiction around the sensored value. Such
hypothesis has been made by Smets and Risic[5]. From now on, all the defined bba
will be zeroed outsideI. Now, sinceI is invariant by∩ , it is implied that all the bba
which will be manipulated, from sensors or after fusion, will be zeroed outsideI. This
makes the basic belief assignments equivalent to a density over the 2-dimension space
IR2 .

4.2 Definition and manipulation of the belief

The definitions of bba, belief and fusion result directly from section 2, but of course
the bba becomes density and the summations are replaced by integrations.

Basic Belief Assignment. As discussed previously, it is hypothesized that the mea-
sures are characterized by a precision interval around the sensored values. In addition,
there is an unknown about the measure which is translated into a basic belief assign-
ment over the precision intervals.

According to this hypotheses, a bba will be a non negatively valued functionm defined
overU , zeroed outsideI (set of generalized intervals), and such that:

∫

x,y∈IR

m
(

x̀ ∩ ý
)

dxdy = 1 .

Belief function. The function of belief,Bel, is defined for any measurable proposi-
tion φ ∈ U by:

Bel (φ) =

∫

x̀∩ý⊂φ

m
(

x̀ ∩ ý
)

dxdy .

In particular, for a generalized intervalx̀ ∩ ý :

Bel
(

x̀ ∩ ý
)

=

∫ +∞

u=x

∫ y

v=−∞

m
(

ù ∩ v́
)

dudv .
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Fusion rule. Being given two basic belief assignmentsm1 andm2, the fused basic
belief assignmentm1 ⊕m2 is defined by the curviline integral:

m1 ⊕m2

(

x̀ ∩ ý
)

=

∫

C={(φ,ψ)/φ∩ψ=x̀∩ý}

m1(φ)m2(ψ) dC .

Now, from hypothesis it is assumed thatmi is positive only for intervals of the form
x̀i ∩ ýi. Proposition 4 implies:

x̀1 ∩ ý1 ∩ x̀2 ∩ ý2 = x̀ ∩ ý where

{

x = max{x1, x2} ,

y = min{y1, y2} .

It is then deduced:

m1 ⊕m2

(

x̀ ∩ ý
)

=

∫ x

−∞

∫ +∞

y

m1

(

x̀ ∩ ý
)

m2

(

x̀2 ∩ ý2
)

dx2dy2

+

∫ x

−∞

∫ +∞

y

m1

(

x̀1 ∩ ý1
)

m2

(

x̀ ∩ ý
)

dx1dy1

+

∫ x

−∞

∫ +∞

y

m1

(

x̀1 ∩ ý
)

m2

(

x̀ ∩ ý2
)

dx1dy2

+

∫ x

−∞

∫ +∞

y

m1

(

x̀ ∩ ý1
)

m2

(

x̀2 ∩ ý
)

dx2dy1 .

In particular, it is now justified that a bba, from sensors or fused, will always be zeroed
outsideI .

5 Implementation of the continuous model

Setting. In this implementation, the study has been restricted to theinterval [−1, 1]
instead ofIR. The previous results still hold by trunctating over[−1, 1] . In particu-
lar, any bbam is zeroed outsideI1

−1 = {x̀ ∩ ý/x, y ∈ [−1, 1]} and its related belief
function is defined by:

Bel
(

x̀ ∩ ý
)

=

∫ 1

u=x

∫ y

v=−1

m
(

ù ∩ v́
)

dudv ,
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for any generalized interval ofI1
−1 . The bba resulting of the fusion of two bbasm1

andm2 is defined by:

m1 ⊕m2

(

x̀ ∩ ý
)

=

∫ x

−1

∫ 1

y

m1

(

x̀ ∩ ý
)

m2

(

x̀2 ∩ ý2
)

dx2dy2

+

∫ x

−1

∫ 1

y

m1

(

x̀1 ∩ ý1
)

m2

(

x̀ ∩ ý
)

dx1dy1

+

∫ x

−1

∫ 1

y

m1

(

x̀1 ∩ ý
)

m2

(

x̀ ∩ ý2
)

dx1dy2

+

∫ x

−1

∫ 1

y

m1

(

x̀ ∩ ý1
)

m2

(

x̀2 ∩ ý
)

dx2dy1 .

Method. A theorical computation of these integrals seems uneasy. Anapproximation
of the densities and of the integrals has been considered. More precisely, the densities
have been approximitated by means of 2-dimensionChebyshev polynomials, which
have several good properties:

• The approximation grows quickly with the degree of the polynomial, without
oscilliation phenomena,

• The Chebyshev transform is quite related to the fourier transform, which makes
the parameters of the polynoms really quickly computable bymeans of a Fast
Fourier Transform,

• Integration is easy to compute.

In our tests, we have chosen a Chebyshev approximation of degree128 × 128 , which
is more than sufficient for an almost exact computation.

Example. Two bbam1 andm2 have been constructed by normalizing the following
functionsmm1 andmm2 defined over[−1, 1]2 :

mm1

(

x̀ ∩ ý
)

= exp
(

−(x+ 1)2 − y2
)

and

mm2

(

x̀ ∩ ý
)

= exp
(

−x2 − (y − 1)2
)

.

The fused bbam1⊕m2 and the respective belief functionb1, b2, b1⊕b2 have been com-
puted. This computation has been instantaneous. All functions have been represented
in the figures 1 to 8.
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Figure 1: Non normalized bbamm1

Interpretation. The bbam1 is a density centered around the interval[−1, 0] , while
m2 is a density centered around[0, 1] . This explains why the beliefb1 increases faster
from the interval[−1,−1] to [−1, 1] than from the interval[1, 1] to [−1, 1] . And this
property is of course inverted forb2 .

A comparison of the fused bbam1 ⊕m2 with the initial bbasm1 andm2 makes ap-
parent a global forward move of the density. This just means that the fused bba is
put on intervals with less imprecision, and possibly on someintervals with negative
width (ie. associated with a degree of contradiction). Of course thereis nothing sur-
prising here, since information fusion will reduce imprecision and produce some con-
tradiction! It is also noticed that the fused bba is centeredaround the interval[0, 0] .
This result matches perfectly the fact thatm1 andm2 , and their related sensors, put
more belief respectively over the interval[−1, 0] and the interval[0, 1] ; and of course
[−1, 0] ∩ [0, 1] = [0, 0] .

6 Conclusion

A problem of continuous information fusion has been investigated and solved in the
DSmT paradigm. The conceived method is versatile and is ableto specify the typical
various degrees of contradiction of a DSm model. It has been implemented efficiently
for a bounded continuous information. The work is still prospective, but applications
should be done in the future on localization problems. At this time, the concept is
restricted to one-dimension informations. However, worksare now accomplished in
order to extend the method to multiple-dimensions domains.



72 Ordered DSmT and Application to the Definition of Continuous DSm Models

-1 -0.5 0 0.5 1 -1
-0.5

0
0.5

1
0

0.2
0.4
0.6
0.8

1

mm2

(

x̀ ∩ ý
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Figure 2: Non normalized bbamm2
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Figure 3: Basic belief assignmentm1



Fréd́eric Dambreville 73

-1 -0.5 0 0.5 1 -1
-0.5

0
0.5

1
0

0.2
0.4
0.6
0.8

1

m2

(

x̀ ∩ ý
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Figure 4: Basic belief assignmentm2
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Figure 5: Belief functionb1
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Figure 6: Belief functionb2
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Figure 7: Fused bbam1 ⊕m2
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)

belief b1 ⊕ b2

b1 ⊕ b2

x
y

Figure 8: Fused bbab1 ⊕ b2
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Délégation Ǵeńerale pour l’Armement, DGA/CEP/GIP/SRO
16 Bis, Avenue Prieur de la Ĉote d’Or
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