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A B S T R A C T : 

Steganography in audio files usually revolves around well-known concepts 
and algorithms, least significant bit algorithm to name one. This paper pro-
poses a new, alternative approach where steganographic information is con-
nected with the medium even more – by using the medium itself as the infor-
mation. The goal of this paper is to present a new aspect of steganography, 
which utilizes machine learning. This form of steganography may produce sta-
tistically indeterminable steganographic files which are immune to brute 
force attempts at trying to retrieve the hidden messages. Then the proposed 
solution is verified against statistical analysis and brute force attacks with 
promising results. 
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Introduction 

Steganography is often discussed along with cryptography. It is not surprising – 
both are related to confidentiality. There is no need to explain why keeping cer-
tain information confidential is important and most often this is achieved by 
encrypting such information. However sometimes it is crucial to hide the very 
fact of communication. It seems that the general tendency of steganography 
leans towards hiding messages in network traffic or inside image files. However, 
one, sometimes neglected, branch of steganography revolves around audio 
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files. Among those kinds of files, one of the best mediums for hiding messages 
are music files.1  

This paper focuses on MIDI (Musical Instrument Digital Interface) files used 
as the medium to hide confidential messages. This format was used mostly due 
to less complicated nature of creating and detecting sounds. However, the gen-
eral idea presented and verified in the following sections should be applicable 
to any audio file format.  

In the next section current state of work regarding steganography in music 
(MIDI files) is examined. In section three steganography in general is discussed. 
Then a new steganography technique is proposed and explained. Section five is 
dedicated to the verification of proposed method. The last section concludes 
this paper.   

Related Work 

Hiding messages in audio files is a broad subject, however there are not many 
research papers which focus on MIDI files. Most common algorithms for hiding 
messages in MIDI files were described in2. However, there seem to be multiple 
branches of steganography in MIDI files.  

One branch revolves around indistinguishable changes in velocity of sounds.2; 3; 4 
The first one describes simple LSB (Least Significant Bit) algorithm, however the 
latter two take a more sophisticated approach. Velody 3 uses the first note’s ve-
locity as the reference value and then encodes secret message in following 
notes’ velocities by either adding or subtracting one from reference velocity 
value. Wu et al.4 took even more complicated approach using velocities in se-
quences of either non-increasing or non-decreasing pitches. The idea similar to 
the one presented in this paper was briefly mentioned in 3 and described as 
utilization of natural properties of music and binary substitution (choosing two 
notes, each representing one binary value), however it was not investigated fur-
ther in that paper.  

Another manner of steganography in MIDI files is hiding messages using note 
duration.5 General idea here is very similar to velocity-based MIDI steganogra-
phy. Instead of altering velocity value of a note, duration is slightly changed. The 
method proposed in 6 uses every two adjacent delta time values, but hides se-
cret information in the first delta time (in consequence increasing it). Second 
delta time from the pair is modified to mitigate the changes done to the first 
one so that total value of delta times for a given pair remains the same.  

Quite interesting, and alternative, approach was presented in StegIbiza.7 It 
used a music tempo as the message carrier and proved that tempo change of 
1% or lower were undetectable even by people with musical background and 
working as professional musicians. 

Steganography 

As mentioned in the Introduction section, steganography is the art of hiding 
messages in plain sight. To hide the message a medium is needed – it might be 
a real painting, piece of paper, digital image file, audio file, etc. Only the medium 
should be visible to a person for whom the message was not intended. That is 
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the greatest problem in steganography – convincing a third party that there is 
no additional information in a given medium. At the same time even for a curi-
ous user, who would like to investigate the file, it should be impossible (or at 
least very challenging) to notice anything out of the ordinary. Quite often ste-
ganographic algorithms exploit flaws in human senses to achieve this effect.  

Historically speaking, steganography is as old as cryptography, if not older. 
Both were used in VII B.C. in Sparta, in form of scytale. Considering the charac-
teristics of steganography, it is not surprising that it was often used in both mil-
itary (microdots 1) and criminal (hiding malware in files) appliances. Steganog-
raphy is also well known by children who sometimes play with lemon juice and 
use it as a sympathetic ink.  

Nowadays the most frequent implementation of steganography is using 
metadata or noise in a file. For instance, least significant bit (LSB) algorithm is 
widely used in image and audio files. This algorithm directly exploits flaws in 
human senses. Changing least significant bit of red channel (or any other chan-
nel for that matter) in RGB image file is indistinguishable for the human eye. 
Similarly changing the least significant bit of sound velocity in an audio file is 
unnoticeable to human ear. In some cases changing even three least significant 
bits may not be detected by human senses2. A very thorough description of ste-
ganography and most common use cases with examples of techniques was pre-
sented by Judge.8  

On the other hand, some form of steganography is often used as a mean to 
protect data from malicious activities, such as counterfeit or illegal copying. This 
is better known as watermarking and may be both visible and invisible. The first 
one is more common; an example might be a company logo in the background 
of a pdf file. The idea here is that this watermark cannot be removed without 
visually disturbing the file it marks. However, it is the latter way that is more 
connected to steganography. For example, changing a specific number of pixel 
data in an image file (for example using LSB algorithm) might be enough to then 
determine if the file has not lost its integrity. Of course, invisible watermarking 
needs to be done in a robust way, so that even a slightest change in a file will 
affect the watermark.  

Steganography in general has one big drawback – it is highly inefficient. Quite 
often a lot of background information is needed to hide even short messages. 
For instance, LSB algorithm in the best-case scenario needs eight times more 
medium data than useful information.2 Furthermore, it often requires some of-
fline information to be distributed beforehand. At least the recipient should 
know that he or she should expect a steganographic message.  

 
1  A method of scaling down an image into the size of a dot used in a text (for example 

above letter ‘i’ or at the end of the sentence. For instance, those scaled down im-
ages might have been pictures taken from a reconnaissance plane. 

2  Assuming that least significant bit of every byte of the medium is used to hide se-
cret message. 
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To avoid any suspicion that something is hidden in a given music file it is cru-
cial not to leave any data that might lead to that conclusion. In the era of digit-
ization, it is equally important, if not more, that the computer will not be able 
to notice the existence of a hidden message as much as a human being. In order 
to achieve that a message cannot be hidden in any form of metadata associated 
with a specific file. One might argue that LSB algorithm does just that – value 
changes are imperceptible for human senses and since the distribution of ’1’s is 
usually about the same as the distribution of ’0’s in any meaningful data the 
computers also have hard time spotting it. However, the popularity of LSB is its 
greatest flaw – this is usually the first thing that an analyst will look for. This is 
why LSB algorithm is often used alongside another measure. This measure 
would be responsible for getting the value which then is modified using LSB. 
This approach proves to be working and gives pretty decent results; however, it 
also makes the algorithm more complicated. 

A New Algorithm 

This paper introduces a new steganography technique, which uses relatively 
simple principles as basis. The solution assumes that a confidential message 
should be hidden as the music itself, not as something that was added later. 
Instead of changing metadata or noise in a file, using actual sounds as the infor-
mation carrier minimizes the risk associated with leaking information whether 
something is hidden in a specific file or not. If a message is embedded into al-
ready existing file, then it is possible that a comparative analysis of those files 
will reveal steganographic information. Creating a file purely for steganographic 
purposes mitigates that risk.  

Unfortunately, this idea introduces new problems, main one being that the 
process of creating music might take a long time even without any restrictions 
related to attempting to hide anything. Additionally, the whole music piece 
needs to sound ’good’, i.e.: a listener should simply enjoy listening to it. It would 
be possible to hire a professional musician who would compose a new song; 
however, it would also prove to be highly costly and time ineffective.  

The solution proposed in this paper uses a different approach. Machine 
learning model is used to create music.9 That model was trained on piano music 
mostly consisting of music from Final Fantasy games. It is a recurrent neural 
network, i.e.: neural network which uses its computation results to calculate 
next output. A thorough description of the model was given by its author in 10. 
The general idea is that the model first randomly picks a sequence of 100 notes, 
which will be used as first input (they are needed because model needs a fixed 
input length). Then each calculated output will be put in front of that sequence, 
which then will be clipped to 100 notes again. Only the calculated notes are 
used to create MIDI files. 

Algorithm 

The high-level idea of the whole algorithm is presented in Figure 1, however in 
this subsection the whole process is explained with greater detail. It is worth 
mentioning that this paper focuses purely on hiding plain-text ASCII messages. 
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It is possible to encrypt the message before hiding it, however it is not in the 
scope of this paper. 

1. Musical notes are split into two sets – one is representing a binary ‘1’ and 
the tother – a ‘0’. It does not matter which notes are in which set, however 
to ensure better results sizes of those sets should be the same or very 
close. 

2. User needs to provide a secret message (ASCII string) and a positive num-
ber (called depth_level in Figure 1) corresponding to how often a ste-
ganographic sound will occur in the output musical file. Please note, it 
does not mean that every depth levelth sound will be a steganographic 
note – it means that from a certain point every depth levelth note will 
be a steganographic one. 

3. Secret message provided by user is converted into a stream of ’1’s and 
’0’s. 

4. Results are stored in a list which will be converted to a MIDI file. The music 
generation process starts and works according to following rules. 
• Chords are added to the final list without any changes. This algo-

rithm does not use them as the information carrier. 
• First 2*depth_level notes are also added without any changes. As 

the model used for this implementation is a recurrent neural net-
work, this rule allows the model to warm up. 

• If total number of notes (notes_number) modulo depth level is 
equal to 0 then this is a note that will reflect next ’0’ or ’1’ from a 
converted secret message. In other words – every depth level note 
is a steganographic note. 

• If a note is not a steganographic note then it is added to the final 
list without any changes. 

• If a note is a steganographic note: 
• it is added to the list if it already is present in a correct notes set 

(i.e.: if bit to be hidden is a ’1’ and note is in a set corresponding 
to ’1’ then it is added). 

• if it is not in a correct notes set then the next best note is taken 
(from the model’s prediction) and these rules are applied once 
again. 

5. Once all ’1’s and ’0’s representing secret message were projected into 
their corresponding notes the generation process ends and the list is 
converted into a MIDI file. 

Implementation 

Algorithm described in this section was implemented using Python program-
ming language (version 3.7). For model prediction it uses tensorflow and keras 
modules. Most of number operations use numpy module. Both creation and 
analysis of MIDI files were performed using music21 module. Figure 2 presents 
graphical user interface, which was written using kivy module. For the graphical 
interface it is possible to specify output filename, however it has nothing to do 
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Figure 1: Diagram representing high-level overview of proposed algorithm  
for hiding messages. 

with algorithm itself. As seen in Figure 2, in order to extract the secret message 
only the hiding depth is needed, as a proof of correctly performed extraction 
the secret message fetched from a file is displayed. 
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Figure 2: Creating steganographic file (left) and extracting secret message  
from a file (right). 

Verification 

In order to verify the functionality and performance of the proposed solution a 
series of MIDI files were created using the machine learning model. Then using 
the algorithm described in previous section a series of steganographic MIDI files 
were created (with varying secret messages and hiding depths). First the files 
were subjected to purely statistical analysis, then they were analysed in terms 
of music theory. Lastly brute-force attacks were considered. 

Statistical Analysis 

Statistical analysis was supposed to check whether it would be possible to de-
termine if a given file might contain something more than just music. Initial 
tests, separated from theory of music, were designed to see if there are any 
visible differences between regular MIDI file and one with secret message hid-
den among the notes. 

Figures 3 and 4 show distributions of notes can be found for regular MIDI file 
and steganographic MIDI file respectively. Notes found in the x-axis of those 
figures are not binding – those are only examples. Due to random aspect of 
model predictions each generated file (regardless of secret message presence) 
is different. However, the distributions always look very similar to those seen in 
Figures 3 and 4. 

Following the information found in Figures 4 and 5 it is visible that ste-
ganographic notes do not contribute significantly to overall number of occur-
rences for a specific note. Due to splitting notes into two sets of a similar size, 
statistical characteristics of a steganographic MIDI files and normal ones are 
similar (Figures 3 and 4). Hence a protection against statistical analysis was am-
plified. This is very similar to the homophonic cipher principle of operation – 
many possibilities for encoding single character (either ’1’ or ’0’ in this case) 
flattens the statistics. In result the fewer the number of times a specific note is 
used for steganographic purposes the less likely it is to be recognized as such.  
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Figure 3: Example of notes distribution in a generated MIDI file without hidden message. 

 

 

Figure 4: Example of notes distribution in a steganographic MIDI file (hiding depth value  
set to 8). 

For example, note E2 was used 21 times in total, however only once to hide 
a message (Figures 4 and 5). 

Useful steganographic information to carrier information ratio (referred to 
as ’SCR’ – Steganography-Carrier Ratio) can be defined as the total number of 
notes that were used to hide secret message divided by the total number of 
sounds in the given MIDI file. Implementation of the algorithm proposed in this 
paper takes only one, excluding the secret message, parameter – hiding depth. 
Essentially it has an impact on how often a steganographic note occurs in the 
file. The relationship is rather simple – increasing the value of hiding depth re-
sults in longer output file and in consequence lower SCR. Refer to Table 1 for 
average values of SCR in regards of hiding_depth value. Hence SCR value can be 
controlled to some extent by user. 



A New Steganographic Algorithm For Hiding Messages In Music 
 

 269 

 

Figure 5: Notes that were used to hide secret message, same file as in Figure 4. 

 
Table 1. Average value of SCR in regards of different hiding depth values. 

Hiding depth Average SCR value Standard deviation σ 

7 0.139 0.003 

8 0.122 0.002 

12 

16 

20 

24 

0.0813 

0.0610 

0.0488 

0.0408 

0.0009 

0.0009 

0.0005 

0.0004 

 

Statistical Analysis with Music Theory 

To further analyse this solution the concept of musical scales needs to be intro-
duced. The simplified description for a scale is a group of notes that generally 
sound good together. Though it is not the rule that a single song has to utilize 
only one scale it is safe to assume that in general the more a scale (any scale) 
fits the song the more likely it is to sound pleasing.3 Once again a series of tests 
were performed to see how this steganographic algorithm operates regarding 
musical scales. 

The model used for generating sound sequences was not trained with musi-
cal theory and specifically scales in mind, but on examples instead. Thus it is not 
the case that every song without a hidden message can be assigned fully to a 

 
3  However, if a song would consist of only three notes from the same scale just playing 

constantly in the same order then it would look like the song should be enjoyable to 
listen to, but in fact it would be the opposite case. 
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scale. This can be seen in Figure 6. For reference – the closer the value is to one 
the more fitting the scale is. Most of the regular files generated by the model 
lie in the fitness of around 0.2 for the best fitting scale. However as seen in Fig-
ure 6 there are cases when fitness is much higher (even equal to maximal value). 

 

 

Figure 6: Plot describing fitness of best fitting scale for a given MIDI file. 

After analysing 80 MIDI files it turned out that, if the best fitting scale has the 
fitness of about 0.5 or higher then odds are it will be enjoyable. Although cases 
with best fitness below 0.5, which also sounded pleasurable have been encoun-
tered. 

On the other hand analysing steganographic files regarding musical scales re-
vealed a flaw in this implementation. Fitness for most cases is still oscillating 
around 0.2, however the highest fitness is usually around 0.5 (Figures 7 and 8). 
It is worth noting that this is only the disadvantage of the implementation – the 
model used for generating sounds was not trained with steganography as its 
purpose. Nevertheless, even in this implementation it should be possible to 
achieve higher fitness results for steganographic MIDI files. In theory if the 
model always predicted next note as steganographic note every hiding depth 
note (i.e.: no changes would be needed) then fitness should be higher, although 
during data collection for this paper it did not occur. 

Brute Force Attacks 

Algorithm, apart from the secret message, takes only one parameter – in this 
paper it is referred to as ’hiding depth’. Essentially, this parameter controls how 
often steganographic note occurs in an output MIDI file, which directly maps to 
the output file’s length. Of course, the length of the secret message is also a 
contributing factor in the final length of the output file, however for the same 
secret message it is the hiding depth that controls it. 

Regarding immunity to the brute-force attacks it would be helpful to consider 
worst case scenario. An adversary knows the algorithm and can spend as much 
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Figure 7: Plot describing fitness of best fitting scale for a given steganographic MIDI file (hiding 
depth set to 6). 

 

Figure 8: Plot describing fitness of best fitting scale for a given steganographic MIDI file  
(hiding depth set to 16). 

time trying to brute-force the file as he or she wants. Additionally, the adversary 
knows how notes were split into ’1’- and ’0’-sets. However, he or she does not 
know what is the hiding depth value thus all possible values need to be checked. 
In summary, initial conditions are such that an adversary knows everything 
about the algorithm. All that he or she will need to correctly retrieve the secret 
message is hiding depth value. Brute-force attack will require to only check all 

possible values of hiding depth – so ℎ ∈ ⟨ 1,
𝑁𝑛

2
 ⟩, where ℎ is the hiding depth 

and 𝑁𝑛 is the total number of notes in the MIDI file. The average number of 
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notes for a given hiding depth value and secret message can be found in Tables 
2 and 3. 

Tables 2 and 3 also prove that total number of notes in a steganographic MIDI 
file is linearly dependent on both hiding depth and secret message length 
(length of word ’confidential’ is twice as big as length of word ’secret’). 

Checking all possible values of hiding depth for a MIDI file of total number of 
notes of 1487 takes nearly five minutes.4 However as seen in Tables 2 and 3 
actual value of hiding depth is much lower than the total number of notes. 
Therefore, using brute-force with full algorithm knowledge is a trivial task. 

Table 2. Average number of notes in a steganographic MIDI file for a given hiding depth and 
secret message of ‘confidential’. 

Hiding depth Average number of notes Standard deviation σ 

7 647 10 

8 745 14 

12 

16 

20 

24 

1123 

1487 

1862 

2262 

15 

32 

23 

26 

 

Table 3. Average number of notes in a steganographic MIDI file for a given hiding depth and 
secret message of ‘secret’. 

Hiding depth Average number of notes Standard deviation σ 

7 326 5 

8 375 7 

12 

16 

20 

24 

559 

752 

938 

1131 

8 

18 

17 

30 

 
As it was already mentioned in section 5.1 by default algorithm has only one 

parameter, however it is possible to introduce one additional configurable at-
tribute. As explained in section 4.1, algorithm requires two sets of notes to map 
a sound to the corresponding binary value. All of data collected and presented 
in this paper used one, arbitrarily chosen, division of notes into sets. Those sets 
were of size differentiated by one (due to uneven set of all notes) and that 

 
4  Tested in Python 3.7 on Intel Core i7-8550U (1.9-4.0 GHz) processor, 16 GB RAM. 
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specific arrangement of notes was chosen to be as much statisticallyneutral as 
possible. With that in mind – it does not mean that there is not any other ar-
rangement that would also fit given restrictions. 

Assuming that the goal is to have as much protection against brute-force at-
tacks let us consider the situation where user could also specify the note sets 
used by algorithm. Initial conditions of that brute-force attack would be similar 
to one presented previously. An adversary knows how algorithm works how-
ever this time he or she does not know both, how the notes were split into ’1’- 
and ’0’-sets and what was the hiding depth value. Since for a given ’1’- and ’0’-
sets finding the correct hiding depth is a trivial task, analysis of this scenario 
comes down to solving a simple combination without repetition problem. There 
are 77 individual notes (used for hiding messages in this implementation). Cre-
ating two sets is simply choosing the number of notes to be in one set and cal-
culating how many ways there are to choose that many notes from 77 notes, 
the rest will automatically end up in the second set. Keeping the sizes of those 
sets the same as they are in current implementation means that total number 
of ways to split the notes is the sum of total number of ways to choose ’0’-set 
of length 38 and of length 39 - which is essentially multiplying one of those num-
bers by two, i.e.: 

2 ∗ (
77

38
) = 2.7217014868 ∗  1022 

This is about as much as there are stars in our Universe.11 The number would 
be even bigger if different sizes of sets were considered. Of course, on average 
the correct sets would be found after checking about half of all possibilities, 
which potentially reduces the number of checks that would have to be done. 
This, however, does not change the order of magnitude of that number, so for 
obvious reasons it would be impossible to measure how long it would take to 
find the correct note sets. However, it only proves that in theory the algorithm 
is resistant to brute-force attacks even if an adversary knows how it operates, 
provided that set configuration is used. In a real scenario not all of the notes in 
the given set are used, which might limit the number of possibilities. This be-
haviour is not deterministic due to random aspect of music generation in the 
model used for that purpose. It would be possible to manually influence the 
performance of the algorithm to make it use more notes from the sets. This 
would result in an even flatter statistical analysis, which is desirable. On the 
other hand, it might also worsen the music scale fitness, which is not beneficial. 

Introducing set configuration also leads to one new problem. Note sets are 
crucial components of proposed algorithm, hence the creator and recipient of 
the secret message should have the same sets configured during embedding 
and extracting the message. There are many possible solutions for that prob-
lem. Steganography is not used for interactive conversation and rather for uni-
directional type of communication. Also considering the characteristics and use 
cases of steganography it is not crucial to have a real-time note sets distribution. 
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For example, participating parties could agree beforehand on the sets used in 
the next message even verbally. 

Summary 
In this paper a new technique of hiding messages in music files was proposed. 
It utilizes machine learning model to mitigate drawbacks of human-composed 
music. Algorithm described in this paper is based on a set of simple principles 
which combined produce complicated structures. Series of MIDI files (both with 
and without embedded hidden message) were analysed in order to verify the 
performance of that solution. It proved to be immune to statistical analysis con-
cluding from similar notes distribution for all generated files. 

There are some discrepancies considering music theory. Although in most 
cases the best fitness oscillates around 0.2 for all files (regardless of secret mes-
sage presence), the best encountered fitness values are much different. For 
cleanly generated music files (no secret message) the best possible fitness of 
1.0 was encountered. Best calculated fitness for steganographic files was below 
0.5. Such phenomenon corresponds directly to level of enjoyment associated 
with a given piece of music. Best fitness value below 0.5 most often means that 
given music file will not be enjoyable, however it is only a rule of thumb. 

Analysis from brute-force perspective gave promising results. Proposed algo-
rithm introduces enough degrees of freedom so that it is impossible to perform 
brute-force attack in a reasonable period of time. Unfortunately, the more re-
sistant to brute-force attempts a file is, the more likely it is to cause suspicion 
due to decrease in scale fitness. Thus, it appears that level of brute-force im-
munity is the matter of compromise with the level of enjoyment associated with 
listening to a file. That is the case for the analysed implementation. 

The biggest defect of this particular implementation is that due to changing 
the natural behaviour of a model and its randomness, it might take more time 
until the file that will satisfy user’s subjective demands is generated. 

Potential future work may include developing custom model for music gen-
eration, which will be designed with that specific appliance in mind. It may help 
with musical scale fitness results and in consequence it might be easier (and 
faster) to create good-sounding steganographic file. 
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