

B. Gdowski, R. Kościej & M. Niemiec
vol. 50, no. 1 (2021): 23-36

https://doi.org/10.11610/isij.5010

Published since 1998 ISSN 0861-5160 (print), ISSN 1314-2119 (online)
Research Article

 Corresponding Author: Tel.: +48 126174803 ; E-mail: niemiec@agh.edu.pl

Heuristic-based Intrusion Detection
Functionality in a Snort Environment

Bartłomiej Gdowski, Rafał Kościej,
Marcin Niemiec ()

AGH University of Science and Technology
Mickiewicza 30, 30-059 Krakow, niemiec@agh.edu.pl

A B S T R A C T :

This article provides an introduction to intrusion detection systems, focusing
on extending the Snort environment’s functionalities by adding a new heuris-
tic detection algorithm. The algorithm allows to detect selected types of
cyberattacks through analysis of received packets and based on a list of mali-
cious Internet Protocol addresses. Furthermore, the algorithm underwent
functional verification. The results confirmed that the algorithm successfully
detects the packets originating from the provided list and rates them accord-
ingly.

A R T I C L E I N F O :

RECEIVED: 10 JUNE 2021

REVISED: 02 SEP 2021

ONLINE: 18 SEP 2021

K E Y W O R D S :

cybersecurity, intrusion detection, network attack,
heuristic algorithm

 Creative Commons BY-NC 4.0

1. Introduction

The constant evolution of science and technology leads to the proliferation of
challenges in our everyday lives. With the Internet becoming one of the most
important inventions in the recent century and obviously an integral part of to-
day’s world, new threats have emerged. More specifically, the evolution of the
cyber world is associated with the parallel evolution of threats in cyberspace.

The global network has become a part of our life. People more and more of-
ten use it to do the things that traditionally would be done in person. Conven-
ient online payments (for bills, clothes, or even food) have convinced many to

https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://creativecommons.org/licenses/by-nc/4.0/legalcode

B. Gdowski, R. Kościej & M. Niemiec, ISIJ 50, no. 1 (2021): 23-36

 24

go online, even for the simplest activities. That meant a need to develop more
and more functions available for users. As mentioned earlier, every coin has two
sides – linking our everyday lives to the Internet meant that someone will try to
take advantage of careless users. Harmful software, viruses, and many more
ways to hack anything on the web are developed daily. This means that network
security has become a major issue – being safe in the real world is not enough;
we also need to be careful on the Internet.

Each user wants to feel safe while performing any action online and, of
course, to be safe whilst doing it. That means there is a big responsibility on the
Internet providers, as they supply the Internet’s users with a gateway to the
outside world. This responsibility becomes even more significant when it comes
to the security of bigger companies – breaches in security could mean loss of
personal data (email addresses, logins, passwords, even credit cards details, and
many more). Vulnerabilities could mean losses for a single user but also could
mean thousands, millions, or even billions of dollars. That is the reason why the
evolution of threats causes the development of respective security tools.

The variety of available tools allows them to be used by big companies, as
well as single users. In this article, the authors concentrate on the development
of a heuristic-based functionality that would be compatible with one of the well-
known Internet Detection and Prevention Systems (IDPS) available on the mar-
ket. The results obtained in this paper are a part of the prototype developed in
the H2020 ECHO project. The European network of Cybersecurity centres and
competence Hub for innovation and Operations (ECHO) 1 is a project aimed at
improving the European Union’s cybersecurity throughout developing new so-
lutions to cyber problems. One of the project’s prototypes is the SNORT Module.

2. Intrusion Detection Systems

An Intrusion Detection System (IDS) is a software application or a device capable
of monitoring systems (hosts) or network traffic and detecting anomalies. Ma-
licious activity is either collected on the device or sent externally (e.g., to an
administrator of the network). There are many types of IDSs. They can be clas-
sified into two main categories, which are presented below.2,3,4

• Classification by the analysed activity – in other words, placement of an IDS.

o Host IDS (HIDS) – a system that protects a single device system files by
monitoring packets sent to and by the device whilst operating on a data-
base of system objects. Every time an anomaly is detected, HIDS takes a
snapshot of the current state of monitored files. Then the files are com-
pared to the database – if files were modified or deleted, an alert is sent
to the administrator.

o Network IDS (NIDS) – a system that protects a network by monitoring
inbound and outbound packets from every device in the specified net-
work. NIDS analyses the web traffic by matching packets to a library of
known attacks or using heuristic techniques (e.g., an algorithm). It is ca-
pable of logging and/or alerting when the threat is found.

Heuristic-based Intrusion Detection Functionality in Snort Environment

 25

• Classification by the detection method, i.e., the way the anomalies are de-
tected.

o Signature-based IDS (also called definition-based or misuse-based) – this
type of system operates on a database of known vulnerabilities or attack
patterns. It works similarly to anti-virus software. Signature-based IDSs
work very well with detecting known attacks, but they are not capable
of detecting new attacks. This means that it is crucial that the producer/
vendor of the product updates the threats database frequently.

o Anomaly-based IDS (also called behaviour-based) – this type of system
operates on a similar pattern to that of HIDS. First, it identifies the nor-
mal behaviour of the network by a performance baseline under normal
operating conditions. Next, it constantly compares current network be-
haviour against the network’s baseline. Every time an anomaly is de-
tected, an alert indicating a potential attack is sent. An anomaly-based
IDS is very effective at finding zero-day exploits, but at the same time,
may be flooding with false positives.

The placement of an IDS is critical and varies depending on what the user
wants to protect – e.g., to protect one critical device in the network, one can
use either HIDS, NIDS, or even both of them, depending on available resources.
Therefore, it is crucial to keep the balance between the network performance
and the range of IDS operations.

The most obvious placement of an IDS is behind the firewall – in this way, the
whole network can be monitored, but at the same time, this might create a bot-
tleneck that would decrease the overall throughput of the network. On the
other hand, if the IDS is placed deeper inside the network, the performance will
be maintained, while a part of the network will be left vulnerable.5

3. Snort Environment

Snort is a free open source NIDS capable of logging and/or analysing incoming
traffic in real-time on IP networks. It was originally released in 1998 as a cross-
platform network sniffing tool by Martin Roesch. With the help of the commu-
nity members, it evolved into a powerful Intrusion Detection and Prevention
System (IDPS). It is a great example of how successful an open-source tool can
be when developed in cooperation with the users, for example, by reporting
and even fixing bugs or contributing to the source code.6

The development of Snort has been coordinated by Sourcefire, a company
founded in 2001 by Roesch – the software’s creator. NSS Labs, a company spe-
cialized in testing software and hardware to reveal vulnerabilities to cyber-
threats, has awarded an Approval Certificate to Snort versions: 1.8.1, 1.8.6, and
2.0.7 In 2009 it was called one of “the greatest open source software of all time”
by Info World.8 Snort is now developed by Cisco, which purchased Sourcefire in
2013. The tool itself is free, but it is based on a paid subscription model – the
newest threat rules are available for subscribers immediately, while free users
get access to rules after 30 days.6,9

B. Gdowski, R. Kościej & M. Niemiec, ISIJ 50, no. 1 (2021): 23-36

 26

Snort operates in one of three modes described below.9

• Sniffer Mode – reads packets and displays them in a stream on the screen.
The user themself can check the packed content. The most basic version
displays only Transmission Control Protocol (TCP)/Internet Protocol (IP)
packet headers, but it can be configured to also show User Datagram Pro-
tocol (UDP)/Internet Control Message Protocol (ICMP) headers and packet
data.

• Packet Logger Mode – used for collecting logs. It starts automatically, over-
riding the sniffer mode when the user specifies logging directory. There is
a possibility to configure packet logger mode to save split logs of different
hosts to subdirectories of the log folder. It also allows to save the logs as a
binary file—useful when saving logs from a high-speed network—and to
open saved logs (with filters) using the Snort console.

• Network Intrusion Detection Mode is the most complex mode; it performs
multistage detection and analysis on network traffic. The main feature of
Snort as NIDS is using flexible rule language to describe specific traffic to be
collected by the software. The process of collecting and processing packets
through the Snort engine will be described later in this article.

Snort’s engine consists of a sniffer (packet acquisitor and decoder), prepro-
cessors, detection engine, and the output responsible for generating alerts.9,10

The first step of detecting an unwanted anomaly is obviously collecting (sniff-
ing) network traffic and identifying the structure of each packet. It means that
there is a packet capture and a filtering engine needed to acquire data such as:11

• the packet capture time;

• length of the packet;

• size of the captured packet;

• a pointer to the contents of the packet.

After capturing the packet, Snort begins decoding – the acquired packet en-
ters the packet decoder depending on the link layer from which it is read. De-
coding is pretty much the same regardless of the link layer – Snort verifies the
data and calls into higher layer decoders until there is no higher layer.12

Next in the processing queue are the preprocessors. They allow extending
the functionality of Snort by allowing to configure modules of the packet pro-
cessing easily. In the end, the processed packet reaches the detection engine,
where the rule set—configured by the user—is applied to incoming traffic.

As mentioned earlier, the rule language is very flexible and gives many possi-
bilities to control traffic in various ways. A single rule consists of two parts:
header and options. The header contains the rule’s action, protocol type (cur-
rently supported are: TCP, UDP, ICMP, and IP), destination IP addresses and net-
masks, direction operator (used to indicate the direction of the traffic that rule
applies to), source and destination ports information. The options section con-

Heuristic-based Intrusion Detection Functionality in Snort Environment

 27

tains alert messages and information that determine if the rule action should
be taken depending on the inspected packet.9

4. The New Functionality

Snort is a very flexible tool when it comes to adding new functionalities. Plugins
introduced in one of its earliest versions – ver. 1.5 13 – made automation of some
actions during packet processing easier. One of the ways to extend the func-
tionality of the program is using either a detection plugin or a preprocessor. This
section introduces the latter, as the detection algorithm will operate in cooper-
ation with Snort with an additional preprocessor.

The preprocessors are a part of Snort that is crucial when it comes to devel-
oping a new functionality inside the environmental engine. There are two op-
tions to do so: rewriting the existing preprocessor or writing a new preprocessor
from an existing template. The latter being, of course, more complicated, or –
simply – difficult. Why is there a need for new functionalities when there are so
many existing ones? The answer is very straightforward – for the same reasons
why popular preprocessors were written in the first place.

These major reasons are:

• reassembling packets – sometimes defragmentation (frag3) and reassem-
bly (stream) of the packets are not sufficient to detect specific attacks, so
some functions to split or combine packets in specific ways could be imple-
mented;

• decoding and normalizing protocols – Snort supports decoding and normal-
ization for different protocols (e.g., Telnet, Hypertext Transfer Protocol
(HTTP) or File Transfer Protocol (FTP)), but it is hard to avoid attacks on
different versions of these protocols (on the other hand, it is possible to
configure existing decoding protocols in such way that they will be less de-
pendent on the protocol version, or even allow pattern-matcher to skip the
negotiation data, e.g., in the case of Telnet);

• non-rule or anomaly-based detection – apart from a very efficient rule sys-
tem, Snort also depends on automation, so existing preprocessors can be
used to catch specific attacks instead of writing lots of rules (e.g., sfPortscan
looking for scan attacks);

• and finally, probably the most important reason – developing new func-
tionalities to address the cybersecurity challenges.

The authors propose a new preprocessor to use with Snort called Heuristic. It
is still in development; however, the research presented here is being con-
ducted on the first stable version (alpha). The functions of the preprocessor will
be covered in the “Verification” section. In this section, the authors would like
to focus on the process of adding a new preprocessor to the Snort environment.

The alpha version of the Heuristic preprocessor is made of two files: spp_*.h
and spp_*.c (a header and proper C file) where spp refers to its type – in Snort,
detection plugins have sp prefix, while preprocessors (as above) have spp prefix.
In this case they are called spp_heuristic. The files must be added to

B. Gdowski, R. Kościej & M. Niemiec, ISIJ 50, no. 1 (2021): 23-36

 28

snort*/src/preprocessors (where snort* is Snort’s main catalog). This could be
done either by copying the files manually or by using the command:

cp PATH_TO_HEURISTIC_FILES /spp_heuristic .*

PATH_TO_SNORT_FOLDER /src/preprocessors

Plugins are linked to Snort in a static way, so some of Snort’s files have to be
edited before the preprocessor is detected. First, snort*/src/plugbase.c file has
to be edited by adding include directive of the plugin’s header file (e.g., at the
end of built-in preprocessors section, as in the Listing 4.1 and Setup() function
to preprocessor initialization list (void RegisterPreprocessors() function) – as in
Listing 4.2.

/* built-in preprocessors */

#include "preprocessors/spp_rpc_decode.h"

#include "preprocessors/spp_bo.h"

#include "preprocessors/spp_session.h"

#include "preprocessors/spp_stream6.h"

#include "preprocessors/spp_arpspoof.h"

#include "preprocessors/spp_perfmonitor.h"

#include "preprocessors/spp_httpinspect.h"

#include "preprocessors/spp_sfportscan.h"

#include "preprocessors/spp_frag3.h"

#include "preprocessors/spp_normalize.h"

#include "preprocessors/spp_heuristic.h"

Listing 4.1: Including the preprocessor’s header into plugbase.c file.

void RegisterPreprocessors(void){

 LogMessage("Initializing Preprocessors !\n");

 SetupARPspoof();

#ifdef NORMALIZER

 SetupNormalizer();

#endif

 SetupFrag3();

 SetupSessionManager();

 SetupStream6();

 SetupRpcDecode();

 SetupBo();

 SetupHttpInspect();

 SetupPerfMonitor();

Heuristic-based Intrusion Detection Functionality in Snort Environment

 29

 SetupSfPortscan();

 SetupHeuristic();

}

Listing 4.2: Including the preprocessor’s Setup() function into plugbase.c file.

The next file to edit is preprocids.h in the same folder (src). There are also
two things to be done. First is defining an ID number of the preprocessor (shown
in Listing 4.3). There is a max of 50 preprocessors inside the base 2.9.16 version
of Snort at the same time, so the ID should be between the last preprocessor ID
and 50 – preferably the lowest number possible.

#define PP_HTTP2 35

#define PP_CIP 36

#define PP_MAX 37

#define PP_HEURISTIC 38

#define PP_ALL 50

#define PP_ENABLE_ALL (~0)

Listing 4.3: Defining the ID of the preprocessor in the preprocids.h file.

Second, Snort has to know what the preprocessor type is. According to con-

tents of preprocids.h there are three types:

• Network Analysis Policy processing preprocessors – if enabled by the con-
figuration, they are never disabled;

• Firewall and Application ID & Network Discovery preprocessors – same as
the previous one;

• Application preprocessors – plugins that are enabled according to the type
of processed stream (that is where Heuristic has to be included – edited
class presented in Listing 4.4).

#define PP_CLASS_PROTO_APP (

(UINT64_C (1) << PP_BO) | (UINT64_C (1) << PP_DNS) |

(UINT64_C (1) << PP_FTPTELNET) | \ (UINT64_C (1) <<

PP_HTTPINSPECT) | (UINT64_C (1) << PP_RPCDECODE) | \

(UINT64_C (1) << PP_SHARED_RULES) | (UINT64_C (1) <<

PP_SMTP) | (UINT64_C (1) << PP_SSH) | (UINT64_C (1) <<

PP_SSL) | (UINT64_C (1) << PP_TELNET) | (UINT64_C (1) <<

PP_ARPSPOOF) | (UINT64_C (1) << PP_DCE2) | (UINT64_C (1) <<

PP_SDF) | (UINT64_C (1) << PP_ISAKMP) | (UINT64_C (1) <<

B. Gdowski, R. Kościej & M. Niemiec, ISIJ 50, no. 1 (2021): 23-36

 30

PP_POP) | (UINT64_C (1) << PP_IMAP) | (UINT64_C (1) <<

PP_GTP) | (UINT64_C (1) << PP_MODBUS) | (UINT64_C (1) <<

PP_DNP3) | (UINT64_C (1) << PP_FILE) | (UINT64_C (1) <<

PP_FILE_INSPECT) | (UINT64_C (1) << PP_HEURISTIC))

Listing 4.4: Adding the preprocessor to appropriate class in preprocids.h file.

According to the ID number chosen in preprocids.h the array of preproces-

sors has to be updated in snort.c file (PP_HEURISTIC has been added with ID38,
so it should be the 38th element of the array – which can be seen in Listing 4.5).

static const char* preproc [50] = {

 "PP_BO", "PP_APP_ID", "PP_DNS", "PP_FRAG",

 "PP_FTPTELNET", "PP_HTTPINSPECT", "PP_PERFMONITOR",

 "PP_RPCDECODE", "PP_SHARED_RULES", "PP_SFPORTSCAN",

 "PP_SMTP", "PP_SSH", "PP_SSL", "PP_STREAM",

 "PP_TELNET", "PP_ARPSPOOF", "PP_DCE", "PP_SDF",

 "PP_NORMALIZE", "PP_ISAKMP", "PP_SESSION", "PP_SIP",

 "PP_POP", "PP_IMAP", "PP_NETWORK_DISCOVERY",

 "PP_FW_RULE_ENGINE", "PP_REPUTATION", "PP_GTP",

 "PP_MODBUS", "PP_DNP ", "PP_FILE", "PP_FILE_INSPECT",

 "PP_NAP_RULE_ENGINE", "PP_REFILTER_RULE_ENGINE",

 "PP_HTTPMOD", "PP_HTTP ", "PP_CIP", "PP_MAX",

 "PP_HEURISTIC"};

Listing 4.5: Adding Heuristic to the preprocessors array in the snort.c file.

As Heuristic (and other preprocessors) is written in C language, it has to be

built by the make command. It means that both files (spp_heuristic.h/.c) have
to be included in Makefile.am – identically as in Listing 4.6 – inside src/prepro-
cessors folder.

libspp_a_SOURCES = spp_arpspoof.c spp_arpspoof.h \

 spp_bo.c spp_bo.h \

 spp_rpc_decode.c spp_rpc_decode.h \

 spp_perfmonitor.c spp_perfmonitor.h \

 perf.c perf.h \

 perf-base.c perf-base.h \

 perf-flow.c perf-flow.h \

 perf-event.c perf-event.h \

Heuristic-based Intrusion Detection Functionality in Snort Environment

 31

 perf_indicators.c perf_indicators.h \

 spp_httpinspect.c spp_httpinspect.h \

 snort_httpinspect.c snort_httpinspect.h \

 portscan.c portscan.h \

 spp_sfportscan.c spp_sfportscan.h \

 spp_frag3.c spp_frag3.h \

 str_search.c str_search.h \

 spp_stream6.c spp_stream6.h \

 spp_session.c spp_session.h \

 session_api.c session_api.h \

 stream_api.c stream_api.h \

 spp_normalize.c spp_normalize.h \

 sip_common.h cip_common.h \

 spp_heuristic.c spp_heuristic.h

Listing 4.6: Adding Heuristic to the preprocessors array in the snort.c file

5. Verification

As mentioned earlier, Heuristic adds new functions to Snort. The heuristic-based
detection can take into account data shared by the federated organisations. The
organisations can distribute information about the severity of a threat
associated with a given IP address. Therefore, the snort.conf configuration file
may contain a path to a *.csv file with unsafe IPv4 addresses and assigned flags.
A sample file is included as Listing 5.1.

Each address should have a flag (indicating how dangerous the address is)
assigned to it. There are three flags implemented in Heuristic’s alpha version:

• M – Malicious – the least dangerous type;

• D – Dangerous;

• C – Critical – the most dangerous type.

Each flag has assigned a value that will be added (the values have to be neg-
ative, so their absolute value will be subtracted instead) to the packet rating.
Default values are: M:-1; D:-2; C:-3; and can be edited in the configuration file.
The above-mentioned evaluation of packets starts at a predefined packet_value
variable. Depending on the flag assigned to the address, the packet rating is
updated (hence the negative values assigned to the flags). In the end,
packet_value is compared to the sensitivity variable, which is a deciding factor
in displaying alerts. There are two cases.

B. Gdowski, R. Kościej & M. Niemiec, ISIJ 50, no. 1 (2021): 23-36

 32

packet_value + flag_value ≤ sensitivity - an alert is being

displayed;

packet_value + flag_value > sensitivity - no action is performed.

It is worth mentioning that the advanced multivariable heuristic detection
algorithm, which takes into account different kinds of flags and entropy value
was introduced by the authors in the Entropy journal.14 Listing 5.2 represents
an example configuration file with all of the Heuristic preprocessor variables set.

Listing 5.3 presents a fragment of the HeuristicSnort initialization message
(with configuration from Listing 5.2). This part of Snort’s initialization header
confirms that the Heuristic preprocessor has been initialized, and both
snort.conf and HeuristicIPAddr.csv have been read correctly.

192.168.2.1,D

192.168.2.57,M

192.168.2.63,C

Listing 5.1: Sample *.csv file with malicious addresses

#declaration of Heuristic variables

preprocessor heuristic: sensitivity 14 packet_value 20

preprocessor heuristic_ip_dangerous:

 #path to the *.csv file

 filename PATH_TO_CSV_FILE/HeuristicIPAddr.csv \

 #flag value override

 flag C -15 \

 flag D -10 \

 flag M -5

Listing 5.2: Sample snort.conf file with Heuristic variables set

Listing 5.4 presents the output of HeuristicSnort. An alert consists of:

• [Packet number] – the packet number in a given iteration of the program;

• [IP_ADDR]->Source address – source address of the packet;

• [FLAG]X – flag defined in the configuration file;

• [Packet value]:X – value of that particular packet.

Heuristic global config:

 Sensitivity: 14

Heuristic-based Intrusion Detection Functionality in Snort Environment

 33

 Start packet value: 20

Heuristic IP dangerous config:

 IP ranking filename: PATH_TO_CSV_FILE/HeuristicIPAddr.csv

 IP ranking record number 3

 Flags value: D: -10, M: -5 C: -15

Listing 5.3: Confirmation of Heuristic initialization.

To fully understand the HeuristicSnort ’s output from Listing 5.4, it has to be
known what devices are represented by the addresses from Listing 5.1.

• 192.168.2.1 is a router address (hence the number and frequency of
incoming packets).

• 192.168.2.57 is a local IP address (the M flag updates the packet_value to
15, which is bigger than sensitivity, so none of the packets from this address
were alerted).

• 192.168.2.63 is an address of a virtual machine (VM), which executed a ping
command twice (each time 2 packets).

[177][IP_ADDR] - >192.168.2.1 , [FLAG]D, [Packet value]:10

[178][IP_ADDR] - >192.168.2.63 , [FLAG]C, [Packet value]:5

[179][IP_ADDR] - >192.168.2.1 , [FLAG]D, [Packet value]:10

[180][IP_ADDR] - >192.168.2.63 , [FLAG]C, [Packet value]:5

[181][IP_ADDR] - >192.168.2.1 , [FLAG]D, [Packet value]:10

[192][IP_ADDR] - >192.168.2.1 , [FLAG]D, [Packet value]:10

[193][IP_ADDR] - >192.168.2.1 , [FLAG]D, [Packet value]:10

[194][IP_ADDR] - >192.168.2.63 , [FLAG]D, [Packet value]:5

[195][IP_ADDR] - >192.168.2.1 , [FLAG]D, [Packet value]:10

[196][IP_ADDR] - >192.168.2.63 , [FLAG]C, [Packet value]:5

[197][IP_ADDR] - >192.168.2.1 , [FLAG]D, [Packet value]:10

[198][IP_ADDR] - >192.168.2.1 , [FLAG]D, [Packet value]:10

[199][IP_ADDR] - >192.168.2.1 , [FLAG]D, [Packet value]:10

[286][IP_ADDR] - >192.168.2.1 , [FLAG]D, [Packet value]:10

[288][IP_ADDR] - >192.168.2.1 , [FLAG]D, [Packet value]:10

[313][IP_ADDR] - >192.168.2.1 , [FLAG]D, [Packet value]:10

Listing 5.4: Fragment of Heuristic_Snort output.

The contents of Listing 5.4 and information below that listing confirm that

the HeuristicSnort is working properly and generates alerts for every address
that violates the preprocessor’s “policy.”

B. Gdowski, R. Kościej & M. Niemiec, ISIJ 50, no. 1 (2021): 23-36

 34

6. Summary

The authors of this paper have provided an overview of types of IDSs and an
introduction to Snort – one of the tools used in intrusion detection. Then, they
provided information on each step of adding a new preprocessor to Snort’s
environment. Finally, the functionalities of the Heuristic preprocessor have
been presented and verified in a short test. It has been proved that the
algorithm successfully rates each packet depending on its source address and
assigned flag.

New functionality is in its early development stage – as the alpha version was
presented in this paper. The configuration of the preprocessor makes it possible
to easily modify existing flags. It is also possible to add new flags analogically.
The simple layout of input *.csv file allows the user to add, remove or modify
existing records on-the-go. The packet value calculation influences the decision
whether or not a specific packet should be reported. Summing everything up,
the algorithm is flexible and can be adapted to specific network environments,
e.g., hospitals or server rooms. The flexibility of the algorithm means that it can
be used anywhere, depending on the needs and requirements.

The design of an innovative detection algorithm and development of a new
functionality in the Snort environment was related to the work in the European
research project – H2020 ECHO. This project was initiated by the European
Commission in 2019 and consists of over 30 partners from different sectors. As
a part of the project, tools and prototypes are developed to help increase
network security.

Cybersecurity is an area of constant development. Therefore, the work on
the new approach to attack detection should continue. In this case,
development means designing and implementing new functionalities that allow
better response to threats and attacks in the network. The first stage of future
plugin development is adding the possibility of threat detection based on IPv6.
Another idea is to implement a ”refresh” mechanism – the algorithm could
collect information on the network traffic and depending on some constraints
new addresses would be added to the *.csv file. This extension of the algorithm
could be hard the means of implementation, but it would greatly increase the
overall network security.

Intrusion detection and prevention is a very important field of research and
will become even more important in the future considering how fast technology
development is in today’s world. This means that there will always be a need to
improve existing and invent new solutions to detect the threats and prevent
them. Even if the current solutions are sufficient at the moment, the threats will
continue to evolve. Often, phenomena or anomalies in the network seem to be
normal behaviour at first glance. However, taking a deeper look, finding
correlations with known attacks, or finding differences between user activity
and a given event, is the task of the heart of a detection algorithm. It seems
likely that the heuristic algorithms based on behaviour analysis will be more and
more frequently encountered in the detection of network attacks. This is due to
the fact that network attacks are increasingly sophisticated and unpredictable.

Heuristic-based Intrusion Detection Functionality in Snort Environment

 35

Constant development and improvement of tools like Snort – for example with
an algorithm presented in this paper – allows the networks to become more
secure and prepared for future attacks.

Acknowledgements

This work was supported by the ECHO project which has received funding from
the European Union’s Horizon 2020 research and innovation programme under
the grant agreement no. 830943.

References

1 ECHO – European network of Cybersecurity centres and competence Hub for innova-
tion and Operations, accessed Junе 10, 2021, https://www.echonetwork.eu/.

2 Rafath Samrin and D. Vasumathi, “Review on anomaly based network intrusion
detection system,” 2017 International Conference on Electrical, Electronics,
Communication, Computer, and Optimization Techniques (ICEECCOT), Mysuru, India,
15-16 Dec. 2017, https://doi.org/10.1109/ICEECCOT.2017.8284655.

3 S. Sobin Soniya and S. Maria Celestin Vigila, “Intrusion detection system: Classifica-
tion and techniques,” 2016 International Conference on Circuit, Power and Compu-
ting Technologies (ICCPCT), Nagercoil, India, 8-19 March 2016, https://doi.org/10.11
09/ICCPCT.2016.7530231.

4 Karen Scarfone and Peter Mell, “Guide to Intrusion Detection and Prevention
Systems (IDPS),” Tech. rep. SP 800-94, National Institute of Standards and
Technology, 2012.

5 A A Aryachandra, Y. Fazmah Arif, and S. Novian Anggis “Intrusion Detection System
(IDS) server placement analysis in cloud computing,” 2016 4th International
Conference on Information and Communication Technology (ICoICT), Bandung,
Indonesia, 25-27 May 2016, https://doi.org/10.1109/ICoICT.2016.7571954.

6 Snort – Network Intrusion Detection & Prevention System, accessed Junе 10, 2021,
www.snort.org/.

7 NSS Labs. Software tested by NSS Labs (source captured by The Wayback Machine),
accessed Junе 10, 2021, http://nsslabs.com/content/view/15/43/.

8 Doug Dineley, “The greatest open source software of all time,” InfoWorld, August 17,
2009, www.infoworld.com/article/2631146/the-greatest-open-source-software-of-
all-time.html.

9 “SNORT Users Manual 2.9.16. The Snort Project,” 2021, http://manual-snort-org.s3-
website-us-east-1.amazonaws.com/.

10 Alexander Tzokev, Antonis Voulgaridis, Bartłomiej Gdowski, et al., “Inter-sector
prototypes – High-level design,” Tech. rep. Deliverable D4.4, ECHO consortium, 2020.

11 Brian Caswell, Jay Beale and Andrew Baker, Snort Intrusion Detection and Prevention
Toolkit (Syngress, 2007).

B. Gdowski, R. Kościej & M. Niemiec, ISIJ 50, no. 1 (2021): 23-36

 36

12 Adeeb Alhomouda, Rashid MuniraJules, Pagna Dissoa, Irfan Awanab A.Al-Dhelaan,
“Performance Evaluation Study of Intrusion Detection Systems,” Procedia Computer
Science 5 (2011): 173-180.

13 Martin Roesch, “README.PLUGINS,” Snort FAQ, accessed Junе 10, 2021,
https://www.snort.org/faq/readme-plugins.

14 Marcin Niemiec, Rafał Kościej, and Bartłomiej Gdowski, “Multivariable Heuristic
Approach to Intrusion Detection in Network Environments,” Entropy 23, no. 6 (2021),
776, https://doi.org/10.3390/e23060776.

About the Authors

Bartłomiej Gdowski is an ICT student at the AGH University of Science and
Technology, Poland. Currently, he works on his Master’s Degree. His main fields
of research include network management and cybersecurity. He participated in
the ECHO project, which resulted in several reports and a journal publication.

Rafał Kościej is studying Electronics and Telecommunications at the AGH
University of Science and Technology, currently working towards his Master’s
Degree. His main field of research is network security. He has research
experience in the ECHO project.

Marcin Niemiec was awarded his PhD and PhD Hab. in telecommunications in
2011 and 2019, respectively. Currently, he works as an assistant professor at
the AGH University of Science and Technology, Poland. His research interests
focus on cybersecurity. He has been involved in numerous European projects
(FP6, FP7, and H2020). He is the co-author of over 90 publications.

	1. Introduction
	2. Intrusion Detection Systems
	3. Snort Environment
	4. The New Functionality
	5. Verification
	6. Summary
	Acknowledgements
	References

