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A B S T R A C T :  

This article presents proof of two inequalities about two measures of uncer-
tainty of basic belief assignments, called respectively Imprecision measure 
and U-uncertainty measure, that have been introduced by Dubois and Prade 
in the 1980s. These inequalities have been considered as obvious by the au-
thors, but to prove them rigorously requires some effort, as demonstrated in 
this article.  
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1. Introduction 

This article presents two mathematical proofs of inequalities about two 
measures of uncertainty of basic belief assignments, called respectively the 

Imprecision and the U - uncertainty (or non-specificity) that have been 
introduced by Dubois and Prade.1,2,3 We recall that a Basic Belief Assignment 

(BBA) m defined on the power set 2 of the finite frame of discernment (FoD) 
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 1 2 n, ,...,    is a mapping m( ):2 [0,1]   such that m( ) 0   and

X
m(X) 1


 . This type of mapping has been introduced by Shafer.4 The 

cardinality of the FoD is n  . The measures of imprecision l(m)  and of 

nonspecificity U(m)  are respectively defined by  

i

i i
X X 2

l(m) m(X) X m(X ) X
 

    
 

(1) 

 

i

i i
X X 2

U(m) m(X)log( X ) m(X )log( X )
 

   , 
 

(2) 

where iX  is the i-th element of the power set 2  of the FoD   and iX  is its 

cardinality. By convention, and without loss of generality, we will take 1X   

(the empty set), and n2
X  . The integer index i varies from 1 to n2 2

 .  

vm  is the vacuous BBA defined by vm (X) 1 If X  and vm (X) 0  for all 

elements X of 2 .This vacuous BBA vm  characterizes a full ignorant source 

of evidence.  

In the next sections we prove that for any BBA vm m  defined on 2  the 

two following inequalities hold 

vl(m) l(m )  (3) 

and 

vU(m) U(m )  

 
(4) 

 

We will prove these two inequalities in two ways: 1) by a direct application 
of the Theorem of convex combination (see Theorem 1), and 2) by a direct 
calculation from the mathematical definitions of l(m)  and U(m)  measures of 

uncertainty.  
For proving these inequalities, we first recall that a convex combination, 

denoted by ns , of n  values  iz ,i 1,2,...,n  is a linear combination of the form  
n

n i ii 1
s w z


  (5) 

where iw [0,1]  is the weight of the value iz  such that 
n

ii 1
w 1


 .  

In the appendix, we prove the following useful theorem that will help us to 
prove the inequalities (3) and (4) in the next sections.  
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Theorem 1: Let 
n

n i ii 1
s w z


  be a convex combination of n  values 1 2 nz ,z ,...,z  

with normalized weights 1 2 nw ,w ,...,w , where  iw 0,1 . Then, we have  

i n imin{z Z} s max{z Z}     (6) 

where i 1 2 n iZ {z {z ,z ,...,z }|w 0}   . 

Proof of Theorem 1: see appendix.  

2. Proofs that  v vI(m) l(m ) if m m  

2.1. First proof: using the theorem of convex combination  

The proof of inequality (3) is a direct application of Theorem 1 when working 

with n2 2
 values i iz X  and weights i iw m(X ) . We recall that integer index 

i  spans  n1,2,...,2 and that 1 1w m(X ) m( ) 0    for any BBA m  (by definition 

of m ). Therefore, one has always at least one weight (i.e. 1w ) among all n2

weights equals zero, which justifies the use of Theorem 1, rather than Theorem 
2 of appendix.  

The imprecision measure l(m)  can also be expressed as 
n2

i ii 1
l(m) m(X ) X


  

because 
n

i

2

i i i i
i 1X 2

m(X ) X m(X ) X
 

   

 
 

Based on Theorem 1, we have  

  

  

n

n

n

i 1 2 i2

2

i i
i 1

i 1 2 i2

min X X , X ,..., X |m(X ) 0

m(X ) X

max X X , X ,..., X |m(X ) 0



 

 

 

  

 
 
 
(7) 

The upper bound of inequality (7) is always lower than n   if vm m  and 

it is equal to n   when vm m .  
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Therefore, one has  

n2

i i
i 1

m(X ) X


   

 
(8) 

and because v vl(m ) m ( ) 1         , one sees that the valid inequality (8) 

is the same as  

vl(m) l(m )  (9) 

which completes the proof of the inequality (3).  

2.2. Second proof: using direct calculation  

First, we note that 

vl(m ) m( ) 1 n n        
 
 

Because m  is a (normalized) BBA 4 such that m( ) 0  and 
X

m(X) 1


 , 

one has  

X

m( ) m(X) 1


    
 
 

Or, equivalently  

X

m( ) 1 m(X)


    
 
 

Therefore,  

X

n m( ) n 1 m(X)


 
     

 
  

 
 

The expression of l(m)  can be decomposed as 
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X X

X X X

X X

l(m) m(X) X m( ) m(X) X

n m( ) m(X) X n 1 m(X) m(X) X

n n m(X) m(X) X

 

  

 

     

 
        

 

 
    

 

 

  

 

 

To prove that vl(m) l(m )  is equivalent to prove that 

X X

n n m(X) m(X) X n
 

 
    
 
   

or to prove  

X X

n m(X) m(X) X 0
 

     (10) 

We can express
X

m(X) X
  as 

X X s.t. X 1 X s.t. X 2 X s.t. X 3

X s.t. X n 1

m(X) X m(X) 1 m(X) 2 m(X) 3

... m(X) (n 1)

      

  

     

   

   


 

That is 

X X s.t. X 1 X s.t. X 2 X s.t. X 3

X s.t. X n 1

m(X) X m(X) 2 m(X) 3 m(X)

... (n 1) m(X)

      

  

    

   

   


 

which can be rewritten as  
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X X s.t. X 1

X s.t. X 2 X s.t. X 2

X s.t. X 3 X s.t. X 3

X s.t. X n 1 X s.t. X n 1

m(X) X m(X)

m(X) m(X)

m(X) 2 m(X)

...........

m(X) (n 2) m(X)

  

   

   

     



 

 



   

 

 

 

 

 

Or equivalently  

X X X s.t. X 2

X s.t. X 3

X s.t. X n 1

m(X) X m(X) m(X)

2 m(X)

...

(n 2) m(X)

   

 

  

  

  



   

  





 

Then, for the left hand side of the inequality (10) we obtain the following 
expression  

X X X s.t. X 1

X s.t. X 2

X s.t. X 3

X s.t. X n 1

n m(X) m(X) X (n 1) m(X)

(n 2) m(X)

(n 3) m(X)

......

(n (n 1)) m(X)

   

 

 

  

    

  

  



   

  







 

The right hand side of the previous expression is strictly positive, that is  

X s.t. X 1 X s.t. X 2 X s.t. X 3

X s.t. X n 1

(n 1) m(X) (n 2) m(X) (n 3) m(X)

(n (n 1)) m(X) 0

     

  

       

     

  


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because n 1  (the FoD has more than one hypothesis inside), and also because 

there is at least one element X  for which m(X) 0  when vm m .  

Then, we obtain 

X X

n m(X) m(X) X 0
 

    , 

which completes our second proof of (3) by a direct calculation.  

3. Proofs that  v vU(m) U(m ) if m m   

3.1. First proof: using the theorem of convex combination  

The proof of inequality vU(m) U(m )  is similar to the proof of vl(m) l(m )  by 

replacing values iX  by  ilog X , and by taking 

     1 1m(X )log X m( )log 0 log 0 0      , which is easily justified by 

continuity because xlog(x) 0  as x 0 . More precisely, we can express U(m)  

as 

 

n

i

2

i i i i
i 2X 2 \

U(m) m( )log( ) m(X )log( X ) m(X )log( X )
  

       

Based on Theorem 1, we have 

  

       

 

       

n

n

n

i 2 i2

2

i i
i 2

i 2 i2

min log X log X ,...,log X |m(X ) 0

m(X )log X

max log X log X ,...,log X |m(X ) 0



 

 

 

                      (11) 

Because log(.)  is a continuous increasing function, the upper bound of the 

previous inequality is always lower than    log log n   when vm m . 

Therefore,  
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n2

i i
i 2

m(X )log( X ) log( )


   

 

(12) 

and because          v vU m m log 1 log log         , one sees that the 

valid inequality (12) is the same as  

vU(m) U(m )  (13)  

which completes the proof of the inequality (4). 

3.2. Second proof: using direct calculation  

We prove the inequality vU(m) U(m )  similarly to our second proof for 

vl(m) l(m )  by replacing values iX  by  ilog X . We note that  

         vU m m log 1 log n log n         

Because m  is a (normalized) BBA 4 such that m( ) 0   and 
X

m(X) 1


 , one 

has  

X

m( ) m(X) 1


    

Or, equivalently  

X

m( ) 1 m(X)


    

Therefore, 

X

log(n) m( ) log(n) 1 m(X)


 
     

 
  

The expression of  U m  can be decomposed as 
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 
X

X

X X

X X

U(m) m(X)log X

m( ) log(n) m(X)log( X )

log(n) 1 m(X) m(X)log( X )

log(n) log(n) m(X) m(X)log( X )





 

 

 

   

 
    

 

 
   

 





 

 

 

To prove that vU(m) U(m )  is equivalent to prove that 

X X

log(n) log(n) m(X) m(X)log( X ) log(n)
 

 
    
 

   

or to prove     

X X

log(n) m(X) m(X)log( X ) 0
 

     (14) 

We can express    
X

m X log X
  as 

 
X X s.t. X 1

X s.t. X 2

X s.t. X 3

X s.t. X n 1

m(X)log X m(X) log(1)

m(X) log(2)

m(X) log(3)

........

m(X) log(n 1)

  

 

 

  

 

 

 



  

 







 

Then for the left hand side of inequality (14) we obtain:  
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 

 

 

 

X X X s.t. X 1

X s.t. X 2

X s.t. X 3

X s.t. X n 1

log(n) m(X) m(X)log( X ) log(n) log(1) m(X)

log(n) log(2) m(X)

log(n) log(3) m(X)

......

log(n) log(n 1) m(X)

   

 

 

  

    

  

  



   

  







 

Because  log 1 0 , the equation above can be rewritten as  

 

 

 

X X X s.t. X 1

X s.t. X 2

X s.t. X 3

X s.t. X n 1

log(n) m(X) m(X)log( X ) log(n) m(X)

log(n) log(2) m(X)

log(n) log(3) m(X)

......

log(n) log(n 1) m(X)

   

 

 

  

   

  

  



   

  







 

Because n 1 , and because  log . is an increasing function one always has 

         log n 0, log n log 2 0,..., log n log n 1 0             . Because there is at 

least one element X for which  m X 0  when vm m , we can conclude 

that  

X X

log(n) m(X) m(X)log( X ) 0
 

    

which completes our second proof of (4) by a direct calculation. 

4. Conclusion 

In this paper we have proved that the imprecision measure  l m  is always lower 

than  vl m   , and its U - uncertainty (also known as non-specificity) measure 

 U m  is always lower than    vU m log   for any non-vacuous BBA m . The 
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proofs presented in this paper have been obtained by two different ways: by 
the theorem of convex combination, and by direct calculation from the 

mathematical definitions for      vl m ,l m ,U m , and  vU m . We have shown 

that the use of the theorem of convex combination provides an elegant and 
shorter proof of the inequalities. This theorem will be helpful to evaluate the 
lower and upper bounds of any measures of uncertainty of a BBA that would be 
based on any convex combination of mass values (chosen as weighting factors) 
and real values committed to each element of the power set of the frame of 
discernment.  

Appendix 

Before proving Theorem 1, we need to establish at first the following theorem.  

Theorem 2: Let
n

n i ii 1
s w z


  be a convex combination of n values 1 2 nz ,z ,...,z  

with strictly positive normalized weights 1 2 nw ,w ,...,w . Then, we have  

   1 n n 1 nmin z ,...,z s max z ,...,z   (15) 

The proof of Theorem 2 is done by induction.  

Proof of Theorem 2:  

For n 1 , one has only one value 1z  with weight 1w 1 . Hence

 1 1 1 1 1 1s w z z , min z z   , and  1 1max z z . Therefore, 

   1 1 1min z s max z  , which is a special case of the inequality (15). 

Consequently, the inequality (15) is valid forn 1 . 

For n 2 , one has two values  1 2z ,z  with (strictly) positive weights 

 1 2w ,w  and 2 1 1 2 2s w z w z  .  

1) if 1 2z z , then  2 1 1 2 2 1 1 2 1 1 2 1 1 2s w z w z w z w z w w z z z        . 

Hence one has  1 2 1 2min z ,z z z  and  1 2 1 2max z ,z z z  . Therefore, 

one gets    1 2 2 1 2min z ,z s max z ,z  , which a special case of the 

inequality (15) is forn 2 . 

2) If 1 2z z , then two sub-cases are possible:  
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a) Case 1: if 1 2z z , then  1 2 1min z ,z z  and  1 2 2max z ,z z . We 

have  

 

2 1 1 2 2 1 1 1 1 2 2

1 1 1 2 2 1 2 1 2 2

1 2 2 1 1 2

s w z w z (z z ) w z w z

z (1 w )z w z z w z w z

z w (z z ) min z ,z

     

      

   
 

Тhis last inequality comes from the fact that 2w 0 , and 2 1z z 0   

because  1 2 1min z ,z z . So we have proved  1 2 2min z ,z s .  

Because  2w 0,1 , we have  2 2 1 2 1w z z z z   , and therefore 

 2 1 2 2 1 1 2 1 2 1 2s z w (z z ) z (z z ) z max z ,z         

This shows that  2 1 2s max z ,z . Therefore, we have proved 

   1 2 2 1 2min z ,z s max z ,z   

We see that the inequality (15) holds for n 2  for the case 1.  

b) Case 2: if 2 1z z , then  1 2 2min z ,z z  and  1 2 1max z ,z z . We 

have  

 

2 1 1 2 2 2 2 1 1 2 2

2 2 2 1 1 2 1 2 1 1

2 1 1 2 1 2

s w z w z (z z ) w z w z

z (1 w )z w z z w z w z

z w (z z ) min z ,z

     

      

   
 

This last inequality comes from the fact that 1w 0 , and 1 2z z 0   

because  1 2 2min z ,z z . So we have proved  1 2 2min z ,z s .  

Because  1w 0,1 , we have  1 1 2 1 2w z z z z   , and therefore 
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 2 2 1 1 2 2 1 2 1 1 2s z w (z z ) z z z z max z ,z         

This shows that  2 1 2s max z ,z . Therefore, we have proved 

   1 2 2 1 2min z ,z s max z ,z   

We see that the inequality (15) holds for n 2  for the case 2. 

Finally, the inequality (15) is always valid for n 2  in all cases, i.e. 
when 1 2z z , or 1 2z z , or 2 1z z .  

For n 2 , we suppose that the inequality (15) holds. That is 

   1 n n 1 nmin z ,...,z s max z ,...,z   (16) 

We prove next by induction that this inequality also holds for n 1 .  

For the induction with n 1 , we have to consider n 1  values  1 2 n n 1z ,z ,...,z ,z   

and n 1  strictly positive normalized weights 1 2 n n 1w ,w ,...,w ,w  , that is 

iw 0  for i 1,2,...,n  and 
n 1

ii 1
w 1




 . Because all iw 0 , one has n 1w 1  . So, 

we can always express n 1s 
 as 

n 1

n 1 i i
i 1

n

n 1 n 1 i i
i 1

n
n 1

n 1 n 1 i i
i 1 n 1

n
i

n 1 n 1 n 1 i
i 1 n 1

n 1 n 1 n 1 n

s w z

w z w z

1 w
w z w z

1 w

w
w z (1 w ) z

1 w

w z (1 w )s







 




 

 

  

 

  



 


 



  


  









 

where 
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n n
i

n i i i
i 1 i 1n 1

w
s z v z

1 w 

 


   
 

(17) 

The new weights involved in ns  defined by i
i

n 1

w
v

1 w 




 are also all strictly 

positive because iw 0  and n 11 w 0  , and they are also normalized because 

n n
i

i
i 1 i 1 n 1

n

i
i 1n 1

n 1

n 1

w
v

1 w

1
w

1 w

1
(1 w ) 1

1 w

  













  


 

  

because 
n 1

ii 1
w 1




 , which implies 

n

i n 1i 1
w 1 w 

  . 

Hence, we observe that 
n

n i ii 1
s v z


 is also a convex combination of the n  

real values  1 2 nz ,z ,...,z  with normalized and strictly positive weights iv , and 

therefore the inequality (15) holds (by assumption).  
One sees that the problem of combination of n 1  values has been 

reformulated as a convex combination of two values n 1z 
 and 

n

n i ii 1
s v z


  with 

strictly positive and normalized weights n 1w 
 and  n 11 w  . Because the 

inequality (15) is satisfied for the convex combination of two real values (for

n 2 ), the following inequality holds  

   n n 1 n 1 n n 1min s ,z s max s ,z     (18) 

Because    1 n n 1 nmin z ,...,z s max z ,...,z   is assumed to be true, the 

inequality (18) can be rewritten as 

     1 n n 1 n 1 1 n n 1min min z ,...,z ,z s max max z ,...,z ,z     
 

(19) 

or equivalently 

   1 n n 1 n 1 1 n n 1min z ,...,z ,z s max z ,...,z ,z     (20) 



On Inequalities Bounding Imprecision and Nonspecificity Measures of Uncertainty 
 

 51 

Therefore, the inequality (15) is also valid forn 1 , which completes the proof 
of Theorem 2.  

We can generalize the Theorem 2 to take into account all the cases where 

some weights are zero. For this, the set on n  real values denoted by 

 1 2 nz ,z ,...,z can always be expressed as Z Z  , where 

  i 1 2 n iZ z z ,z ,...,z |w 0    and   i 1 2 n iZ z z ,z ,...,z |w 0   . The convex 

combination 
n

n i ii 1
s w z


  can be expressed as  

i i

n i i i i
z Z z Z

s w z w z
 

    (21) 

because iw 0  for any iz Z , one has 
i

i iz Z
w z 0


 , and therefore 

i
n i iz Z

s w z


 , whose bounds are given by Theorem 2. Hence, 

   i n imin z Z s max z Z    . This completes the proof of Theorem 1, which is 

more general than Theorem 2.  
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